DOI QR코드

DOI QR Code

Characterization and Preparation of Polyimide Copolymer Membranes by Non-Solvent Induced Phase Separation Method

비용매 유도 상전이법을 이용한 공중합체 폴리이미드 분리막의 제조 및 특성평가

  • Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Park, Jeong Ho (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Lee, Myung Gun (Aekyung Petrochemical Co., LTD.) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 이정무 (경상대학교 나노신소재융합공학과) ;
  • 박정호 (경상대학교 나노신소재융합공학과) ;
  • 김득주 (경상대학교 나노신소재융합공학과) ;
  • 이명건 (애경유화 중앙연구소) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2015.08.11
  • Accepted : 2015.08.24
  • Published : 2015.08.31

Abstract

In this study, we synthesis polyimide with high gas selectivity using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) and 4,4-Methylenedianiline (p-MDA), and then the asymmetric membrane was fabricated by non-solvent phase separation method. To confirm the property change of the membrane using different solvent, we measured and compared the viscosity of the polymer solution, cloud point and non-solvent phase separation coefficient. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. The single gas ($CH_4$, $N_2$, $O_2$, $CO_2$) permeation property and selectivity value of the membrane prepared with NMP was higher than the membrane prepared with DMAc. We confirmed that the gas selectivity of the membrane increased and the permeation property decreased with increasing of the solvent evaporation time.

본 연구에서는 높은 기체선택도를 가지는 폴리이미드의 제조를 위해 2,2-bis(3,4-carboxylphenyl) hexafluoropropane과 두 종류의 아민인 2,4,6-Trimethyl-1,3-phenylenediamine (DAM)과 4,4-Methylenedianiline (p-MDA)을 이용하여 합성을 진행한 후 비용매 상전이법으로 비대칭 분리막을 제조하였다. 분리막 제조에 사용된 용매에 따른 물성변화를 확인하기 위하여 고분자 용액의 점도, 흐림점 측정을 통한 고분자의 상평형도, 비용매 상전이 계수 측정을 진행하였다. 상전이법을 이용하여 제조된 분리막은 SEM을 통해 용매 휘발시간에 변화에 따른 모폴로지를 확인하였고 이의 변화에 따른 기체 투과도 변화를 확인하였다. 기체투과도는 디메틸아세트아마이드를 사용하였을 때보다 N-메틸-2-피롤리돈을 사용하였을 때 $CH_4$, $N_2$, $O_2$, $CO_2$의 투과도와 각 기체에 대한 선택도가 높은 것을 확인하였다. 또한 용매 휘발 시간이 길수록 기체 투과도는 감소하지만 기체에 대한 선택도가 증가하는 것을 확인하였다.

Keywords

References

  1. R. E. Kesting and A. Fritzsche, "Polymeric gas separation membranes", pp. 1-14, John Wiley and Sons, New York, NY (1993).
  2. T. Chung and X. Hu, "Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers", J. Appl. Polym. Sci., 66, 1067 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971107)66:6<1067::AID-APP7>3.0.CO;2-G
  3. J. Cheng, D. Wang, F. Lin, and J. Lai, "Formation and gas flux of asymmetric PMMA membranes", J. Membr. Sci., 109, 93 (1996). https://doi.org/10.1016/0376-7388(95)00187-5
  4. F. Lin, D. Wang, and J. Lai, "Asymmetric TPX membranes with high gas flux", J. Membr. Sci., 110, 25 (1996). https://doi.org/10.1016/0376-7388(95)00211-1
  5. D. Koenhen, M. Mulder, and C. Smolders, "Phase separation phenomena during the formation of asymmetric membranes", J. Appl. Polym. Sci., 21, 199 (1977). https://doi.org/10.1002/app.1977.070210118
  6. M. Mulder, "Basic principles of membrane technology", pp. 123-132, Kluwer Academic Publishers, London (1996).
  7. W. B. Richard, "Membrane technology and applications", pp. 97-178, John Wiley and Sons, New York, NY (2012).
  8. M. Wang, X. Zhu, and L. Zhang, "Hole structure and its formation in thin films of hydrolyzed poly (styrene maleic anhydride) alternating copolymers", J. Appl. Polym. Sci., 75, 267 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000110)75:2<267::AID-APP9>3.0.CO;2-S
  9. R. Datta, S. Dechapanichkul, J. Kim, L. Fang, and H. Uehara, "A generalized model for the transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases", J. Membr. Sci., 75, 245 (1992). https://doi.org/10.1016/0376-7388(92)85067-S
  10. I. Pinnau and W. J. Koros, "Gas permeation properties of asymmetric polycarbonate, polyestercarbonate, and fluorinated polyimide membranes prepared by the generalized dry-wet phase inversion process", J. Appl. Polym. Sci., 46, 1195 (1992). https://doi.org/10.1002/app.1992.070460709
  11. D. K. Kim and S. Y. Nam, "Research and development trends of polyimide based material for gas separation", Membr. J., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  12. J. M. Lee, M. G. Lee, D. K. Kim, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325
  13. J. M. Lee, D. J. Kim, M. K. Jeong, M. G. Lee, C. H. Park, and S. Y. Nam, "Synthesis of highly selective polyimide material and comparison of gas permeability by molecular dynamics study", Membr. J., 25, 162 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.162
  14. T. S. Chung, S. K. Teoh, and X. Hu, "Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes", J. Membr. Sci., 133, 161 (1997). https://doi.org/10.1016/S0376-7388(97)00101-4
  15. T. Chung and E. R. Kafchinski, "The effects of spinning conditions on asymmetric 6FDA/6FDAM polyimide hollow fibers for air separation", J. Appl. Polym. Sci., 65, 1555 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1555::AID-APP13>3.0.CO;2-V
  16. Y. Park, K. H. Lee, J. Yim, and J. Travas-Sejdic, "Controlling solvent diffusivity via architecture of nanopore structures in porous low-k films", Microporous Mesoporous Mater., 142, 91 (2011). https://doi.org/10.1016/j.micromeso.2010.11.020
  17. D. Shamiryan, M. Baklanov, P. Lyons, S. Beckx, W. Boullart, and K. Maex, "Diffusion of solvents in thin porous films", Colloids Surf., A, 300, 111 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.055
  18. S. M. Woo, J. J. Choi, and S. Y. Nam, "Preparation of hydroxy polyimde membranes for gas separation by phase inversion method", Membr. J., 22, 62 (2012).
  19. M. K. Hahm, W. I. Sohn, Y. T, Lee, I. H. Kim, J. H. Kim, and S. B. Lee, "Preparation of asymmetric polyethersulfone membrane and its gas separation performance", Membr. J., 10, 130 (2000).
  20. J. Han, D. Yang, S. Zhang, X. Liu, Z. Zhang, and X. Jian, "Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane", J. Membr. Sci., 365, 311 (2010). https://doi.org/10.1016/j.memsci.2010.09.022
  21. K. Kimmerle and H. Strathmann, "Analysis of the structure-determining process of phase inversion membranes", Desalination, 79, 283 (1990). https://doi.org/10.1016/0011-9164(90)85012-Y
  22. S. Pesek and W. Koros, "Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation", J. Membr. Sci., 81, 71 (1993). https://doi.org/10.1016/0376-7388(93)85032-R