DOI QR코드

DOI QR Code

Cross-Sectional Item Response Analysis of Geocognition Assessment for the Development of Plate Tectonics Learning Progressions: Rasch Model

판구조론의 학습발달과정 개발을 위한 지구적 인지과정 평가의 횡단적 문항 반응 분석: Rasch 모델

  • Received : 2015.01.15
  • Accepted : 2015.02.18
  • Published : 2015.02.28

Abstract

In this study, assessment items to examine geocognition on plate tectonics were developed and applied to middle and high school students and college students. Conceptual constructs on plate tectonics are Earth interior structure, specific geomorphology, and geologic phenomena at each plate boundary. Construct for geocognition included temporal reasoning, spatial reasoning, retrospective reasoning, and system thinking. Pictorial data in each item were all obtained from GeoMapApp. Students' responses to the items were analyzed and measured cross-sectionally by Rasch model, which distinguishes persons' ability levels based on their scores for all items and compared them with item difficulty. By Rasch model analysis, Wright maps for middle and high school students and college students were obtained and compared with each other. Differential Item Functioning analysis was also implemented to compare students' item responses across school grades. The results showed: 1) Geocognition on plate tectonics was an assessable construct for middle and high school students in current science curriculum, 2) The most distinguished geocognition factor was spatial reasoning based on cross sectional analysis across school grades, 3) Geocognition on plate tectonics could be developed towards more sophisticated level through scaffolding of relevant instruction and earth science content knowledge, and 4) Geocognition was not a general reasoning separated from a task content but a content-specific reasoning related to the content of an assessment item. We proposed several suggestions for learning progressions for plate tectonics and national curriculum development based on the results of the study.

이 연구는 판구조론(plate tectonics)에 대한 지구적 인지과정(geocognition)의 검사 문항을 중학생, 고등학생 및 대학생들에게 적용하여 문항별 응답 반응을 Rasch 모델에 근거하여 횡단적으로 분석하였다. 그 결과를 바탕으로 판구조론에 대한 학습 발달과정 및 교육과정 개발을 위한 기초 자료를 제안하고자 하였다. 판구조론의 개념적 구인은 '판과 관련된 지구 내부 구조의 이해, 판 경계에서 특징적인 지형, 판 경계의 지질 현상'으로, 지구적 인지과정의 구인은 시간적 추론, 공간적 추론, 과거역산적 추론, 시스템 사고로 선정하였다. 판구조론의 개념적 구인을 문항의 소재로 하여 지구적 인지과정의 추론 능력을 조사하는 통합적 형태로 9개의 평가 문항을 개발하였다. 문항의 그림 자료들은 모두 GeoMapApp을 활용하여 작성하였다. 전체 문항에 대한 학생들이 얻은 점수에 따라 학생들의 수준을 구분하고 이를 각 문항의 과제 곤란도와 비교하여 측정하는 Rasch 모델을 적용하여 학생들의 문항 반응 결과를 측정하였다. Rasch 모델 분석으로 중학생, 고등학생 및 대학생의 Wright map을 각각 작성하여 학생들의 능력과 문항 곤란도를 서로 비교하였고, Differential Item Functioning 분석을 통해 세 학교급 학생들의 문항 반응 결과를 종합하여 수행하였다. 연구결과는 다음과 같다. 첫째, 현행 과학 교육과정에서 판구조론에 대한 지구적 인지과정은 중학생, 고등학생에게 모두 평가 가능한 구인임을 알 수 있었다. 둘째, 중학교 ~ 대학교에 이르는 횡단적 분석에서 학생들의 발달 양상이 가장 두드러진 지구적 인지과정의 요소는 공간적 추론이었다. 셋째, 판구조론에 대한 지구적 인지과정은 적절한 교수활동의 도움과 지구과학 내용 지식을 비계(scaffolding)로 하여 더 높은 수준으로 발달할 수 있다. 넷째, 지구적 인지과정은 과제의 내용과 분리된 일반적 추론 능력이 아니라 과제의 내용과 연관된 내용-특이적(content-specific) 추론임을 알 수 있었다. 이 연구에서 수행한 횡단적 분석의 결과를 바탕으로 지구과학 교육과정에서 판구조론의 내용 체계를 재구성하기 위한 제언을 제시하였다.

Keywords

References

  1. Achieve, Inc. (2013). Next Generation Science Standards. Achieve Inc. On behalf of the twenty-six states and partners that collaborated on the NGSS.
  2. Alonzo, A. C., & Steedle J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421. https://doi.org/10.1002/sce.20303
  3. Black, P. & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5, 7-74.
  4. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd edition). New York, NY: Routledge.
  5. Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. New York, NY: Springer.
  6. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63. https://doi.org/10.1207/s15326977ea1101_2
  7. Carraher, D., Smith, C., Wiser, M.,Schliemann, A., & Cayton-Hodges, G. (2009). Assessing students'evolving understandings about matter. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA, USA.
  8. Cervato, C., & Frodeman, R. (2012). The significance of geologic time: Cultural, educational, and economic frameworks. In K. A. Kastens & C. A. Manduca (Eds.), Earth and Mind II: A synthesis of research on thinking and learning in the geosciences (pp. 19-27). Boulder, CO: The Geological Society of America Special Paper 486.
  9. Cheek, K. A. (2010). Commentary: A summary and analysis of twenty-seven years of geoscience conceptions research. Journal of Geoscience Education, 58, 122-134. https://doi.org/10.5408/1.3544294
  10. Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence based approach to reform. Consortium for Policy Research in Education Report #RR-63. Philadelphia, PA: Consortium for Policy Research in Education.
  11. Dodick, J., & Argamon, S. (2006). Rediscovering the historical methodology of the earth sciences by analyzing scientific communication styles. In C. A. Manduca & D. W. Mogk (Eds.), Earth and Mind: How geologists think and learn about the Earth (pp. 105-120). Boulder, CO: The Geological Society of America Special Paper 413.
  12. Dodick, J., & Orion, N. (2006). Building on understanding of geologic time: A cognitive synthesis of the "macro" and "micro" scales of time. In C. A. Manduca & D. W. Mogk (Eds.), Earth and Mind: How geologists think and learn about the Earth (pp. 77-93). Boulder, CO: The Geological Society of America Special Paper 413.
  13. Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123-182. https://doi.org/10.1080/03057267.2011.604476
  14. Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. GSA Bulletin, 107, 960-968. https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2
  15. Gobert, J. D. (2000): A typology of causal models for plate tectonics: Inferential power and barriers to understanding. International Journal of Science Education, 22(9), 937-977. https://doi.org/10.1080/095006900416857
  16. Gobert, J. D. (2005). The effects of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455.
  17. Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39-53. https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<39::AID-TEA4>3.0.CO;2-I
  18. Gotwals, A. W., & Songer, N. B. (2013). Validity evidence for learning progression-based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching, 50, 597-626. https://doi.org/10.1002/tea.21083
  19. Herbert, B. E. (2006). Student understanding of complex earth systems. In C. A. Manduca & D. W. Mogk (Eds.), Earth and Mind: How geologists think and learn about the Earth (pp. 95-104). Boulder, CO: The Geological Society of America Special Paper 413.
  20. Hermann, R., & Lewis, B. (2004). A Formative Assessment of Geologic Time for High School Earth Science Students. Journal of Geoscience Education, 52, 231-235.
  21. Jeong, K-J., Jeong, K-S., Moon, B-C., & Jeong, J-W. (2007). Misconceptions of the freshmen at high school about plate tectonics. Journal of Korean Earth Science Society, 28(7), 762-774. https://doi.org/10.5467/JKESS.2007.28.7.762
  22. Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49, 1149-1180. https://doi.org/10.1002/tea.21051
  23. Kastens, K. (2010). Commentary: Object and spatial visualization in geosciences. Journal of Geoscience Education, 58, 52-57. https://doi.org/10.5408/1.3534847
  24. Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. In C. A. Manduca & D. W. Mogk (Eds.), Earth and Mind: How geologists think and learn about the Earth (pp. 53-76). Boulder, CO: The Geological Society of America Special Paper 413.
  25. King, H., Clark, S., Libarkin, J., & Stokes, A. (2008, October). The emerging field of geocognition. Paper presented at the Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies, and the Gulf Coast Section of SEPM. Houston, TX. USA.
  26. Lee, H-S., & Liu, O. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94. 665-688.
  27. Libarkin, J. C. (2006). Geoscience education in the United States. Planet, 17, 60-63.
  28. Libarkin, J. C., Kurdziel, J. P., & Anderson, S. W. (2007). College student conceptions of geological time and the disconnect between ordering and scale. Journal of Geoscience Education, 55, 413-422.
  29. Liben, L. S., & Titus, S. J. (2012). The importance of spatial thinking for geoscience education: Insights from the crossroads of geoscience and cognitive science. In K. A. Kastens & C. A. Manduca (Eds.), Earth and Mind II: A synthesis of research on thinking and learning in the geosciences (pp. 51-70). Boulder, CO: The Geological Society of America Special Paper 486.
  30. Maeng, S., Lee, K., Park, Y-S., Lee, J., & Oh, H. (2014). Development and Validation of a Learning Progression for Astronomical Systems Using Ordered Multiple-Choice Items. Journal of the Korean Association for Science Education, 34(8), 703-718. https://doi.org/10.14697/jkase.2014.34.8.0703
  31. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33, 161-180. https://doi.org/10.14697/jkase.2013.33.1.161
  32. Manduca, C. A., & Kastens, K. A. (2012). Geoscience and geoscientists: Uniquely equipped to study Earth. In K. A. Kastens & C. A. Manduca (Eds.), Earth and Mind II: A synthesis of research on thinking and learning in the geosciences (pp. 1-12). Boulder, CO: The Geological Society of America Special Paper 486.
  33. Ministry of Education, Science, and Technology. (2011). Science curriculum based on the revision in 2009. Seoul: MEST.
  34. Mohan, L., Chen, J., & Anderson, C.W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46, 675-698. https://doi.org/10.1002/tea.20314
  35. National Assessment Governing Board (2008). NAEP 2009 science framework development: issues and recommendations. Retrieved from http://www.nagb.org
  36. National Research Council (2006). Systems for state science assessment. Washington, DC: The National Academy Press.
  37. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: The National Academies Press.
  38. National Research Council. (2010). Exploring the Intersection of Science Education and 21st Century Skills: A Workshop Summary. Margaret Hilton, Rapporteur. Washington, DC: The National Academies Press.
  39. National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Washington, DC: The National Academies Press.
  40. Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162-188. https://doi.org/10.1002/tea.21061
  41. Orion, N., & Trend, R. (2009). Thinking and learning in the geosciences. Journal of Geoscience Education, 57, 222-223. https://doi.org/10.5408/1.3544273
  42. Park, S. (2009). An analysis of high school students' mental models on the plate boundaries. Journal of Korean Earth Science Society, 30(1), 111-126. https://doi.org/10.5467/JKESS.2009.30.1.111
  43. Park, S. (2011). An analysis of the mental models of middle school students with different learning style on plate tectonics. Journal of the Korean Association for Science Education, 31(5), 733-744.
  44. Petcovic, H. L., & Ruhf, R. J. (2008). Geoscience conceptual knowledge of preservice elementary teachers: Results from the geoscience concept inventory. Journal of Geoscience Education, 56(3), 251-260.
  45. Petty, M. R., & Rule, A. C. (2008). Effective materials for increasing young children's spatial and mapping skills. Journal of Geoscience Education, 56, 5-14.
  46. Rapp, D. N., & Uttal, D. H. (2006). Understanding and enhancing visualizations: Two models of collaboration between earth science and cognitive science. In C. A. Manduca & D. W. Mogk (Eds.), Earth and Mind: How geologists think and learn about the Earth (pp. 121-127). Boulder, CO: The Geological Society of America Special Paper 413.
  47. Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R. (2009). Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems. 10, Q03014.
  48. Seong, Y., Maeng, S., & Jang, S. (2013). A learning progression for water cycle from fourth to sixth graders with ordered multiple-choice items. Elementary Science Education, 32(2), 139-158.
  49. Sibley, D. F., Anderson, C. W., Heidemann, M., Merrill, J. E., Parker, J. M., & Szymanski, D. W. (2007). Box diagrams to assess students' systems thinking about the rock, water, and carbon cycles. Journal of Geoscience Education, 55, 138-146.
  50. Smith, C. L., Wiser, M., & Carraher, D. W. (2010, March). Using a comparative, longitudinal study with upper elementary school students to test some assumptions of a learning progression for matter. Paper presented at the annual meeting of the National Association for Research on Science Teaching, Philadelphia, PA. USA.
  51. Stillings, N. (2012). Complex systems in the geosciences and in geoscience learning. In K. A. Kastens & C. A. Manduca (Eds.), Earth and Mind II: A synthesis of research on thinking and learning in the geosciences (pp. 97-111). Boulder, CO: The Geological Society of America Special Paper 486.
  52. Stokes, A. (2011, January). Geocognition: A new research discipline for the 21stcentury? Paper presented at the conference of the GEES Subject Centre with the Geological Society of London, Leeds, UK.
  53. Titus, S., & Horsman, E. (2009). Characterizing and improving spatial visualization skills. Journal of Geoscience Education, 57, 242-254. https://doi.org/10.5408/1.3559671
  54. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.

Cited by

  1. Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.103
  2. 생태계에 대한 학습발달과정의 개발과 평가 vol.36, pp.1, 2016, https://doi.org/10.14697/jkase.2016.36.1.0029
  3. 용해와 용액 개념에 대한 학습발달과정 조사 vol.36, pp.2, 2015, https://doi.org/10.14697/jkase.2016.36.2.0295
  4. 학습 발달과정 탐색을 통한 계절의 변화 교육과정 및 교수 계열 제안 vol.39, pp.3, 2015, https://doi.org/10.5467/jkess.2018.39.3.260
  5. 지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구 vol.38, pp.4, 2015, https://doi.org/10.14697/jkase.2018.38.4.481
  6. 순위 선다형 문항을 이용한 초·중·고등학생의 천문학적 사고 분석 vol.11, pp.2, 2018, https://doi.org/10.15523/jksese.2018.11.2.125
  7. 문항 반응 분석을 활용한 초등학생과 중학생의 시스템 사고 검사 도구 타당도 검증 vol.67, pp.2, 2015, https://doi.org/10.25152/ser.2019.67.2.249
  8. 다층 서답형 문항을 이용한 태양계 구조 학습 발달과정 개발 및 타당성 검증 vol.41, pp.3, 2020, https://doi.org/10.5467/jkess.2020.41.3.291
  9. GeoMapApp 자료를 이용한 화산과 지진 학습에서 초등학생의 공간 능력에 따른 공간적 사고의 발현 양상 vol.40, pp.3, 2015, https://doi.org/10.15267/keses.2021.40.3.390