DOI QR코드

DOI QR Code

Effect of Milling Methods and Particle Size on Rice Cake (Baeksulgi) Characteristics

쌀가루 분쇄 방법 및 입자 크기에 따른 백설기의 품질특성

  • Lee, Myeong Gi (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University) ;
  • Son, Sung Ho (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University) ;
  • Choung, Myoung Gun (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Kim, Sun Tae (Department of Plant Bioscience, Pusan National University) ;
  • Ko, Jong Min (Department of Functional crop, National Institute of Crop Science) ;
  • Han, Won Young (Department of Functional crop, National Institute of Crop Science) ;
  • Yoon, Won Byong (Department of Food Science and Biotechnology, College of Agricultural and Life Science, Kangwon National University)
  • 이명기 (강원대학교 식품생명공학전공) ;
  • 손성호 (강원대학교 식품생명공학전공) ;
  • 정명근 (강원대학교 생약자원개발전공) ;
  • 김선태 (부산대학교 식물생명과학전공) ;
  • 고종민 (국립식량과학원 두류유지작물부) ;
  • 한원영 (국립식량과학원 두류유지작물부) ;
  • 윤원병 (강원대학교 식품생명공학전공)
  • Received : 2014.09.16
  • Accepted : 2014.10.21
  • Published : 2015.02.28

Abstract

The milling characteristics of rice using different milling methods (dry and wet) were investigated. Generally, average particle sizes of dry-milling flours were bigger than those of wet-milling flours due to low moisture content. Three theoretical models for milling, such as the Rittinger, Kick, and Bond model, were applied to characterize the milling process of rice. The wet-milling method showed higher value milling constants including Bond's work index. Baeksulgi was used to study the effect of the milling method and particle size on rice flour's physicochemical property (water content, color value, and texture). Moisture content and hardness of Baeksulgi were smaller as the particle size became smaller. L value of Baeksulgi was greater as the particle size became smaller. The energy requirement for the milling of grains to obtain a suitable size of particles was estimated by the grinding models. The results of our study might provide a systematic way to estimate the energy requirement to obtain a suitable particle size by milling.

쌀의 분쇄 시간에 따른 분쇄물의 양에 대한 연구를 수행하여 쌀의 분쇄 특성을 Rittinger, Kick, Bond의 이론으로 설명하였다. 분쇄시간이 길어질수록 평균 입자 크기가 작아졌으며 습식 분쇄의 경우 높은 수분함량으로 인해 쌀 전분 입자의 결합력이 약해졌기 때문에 분쇄 초기 시간에 건식 분쇄보다 쌀가루의 평균 입자 크기가 작았다. 하지만 분쇄 시간이 길어질수록 최종 입자 크기는 건식 분쇄에서 더 작게 나타났다. 산업적인 측면에서 입자 크기를 감소시키기 위해 필요한 분쇄 에너지는 공정을 설계하는데 가장 중요한 요인 중 하나이다. 분쇄 시간이 증가함에 따라 습식 분쇄가 건식 분쇄에 비해 요구되는 에너지량이 많았다. 습식 분쇄 쌀가루로 제조한 백설기는 건식 분쇄 쌀가루로 제조한 백설기보다 쌀가루의 수분흡수력이 높기 때문에 수분함량이 더 높게 나타났으며 또한 고운 입자분포로 인한 채움 효과로 건식 백설기보다 L값(명도)이 높게 나타났다. 조직감 측정 결과에 따르면 습식 분쇄의 경우 18, 40 mesh에서 높은 조직감 특성을 보이고 60 mesh 이상의 입자 크기에서 감소한 반면 건식 분쇄는 입자 크기 감소와 함께 조직감 특성이 지속적으로 높아졌으며 이러한 경향은 관능적인 기호도 결과와 일치했다. 분쇄 방법 및 최종 입자 크기는 제품의 특성에 영향을 미치는 요인이 되기 때문에 분쇄 이론을 적용하여 분쇄 특성을 이해하고 원하는 크기의 입자 크기를 얻기 위해 필요한 최소한의 에너지를 예측하는 것은 중요하다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Bao J, Bergman CJ. 2004. The functionality of rice starch. In: Starch in Food: Structure, Functional and Application. Eliasson AC. (ed). CRC Press, Inc., Boca Raton, FL, USA, pp. 258-292.
  2. Chen JJ, Lu S, Lii CY. 1999. Effect of milling on the physicochemical characteristics of waxy rice in Taiwan. Cereal Chem. 76: 796-799. https://doi.org/10.1094/CCHEM.1999.76.5.796
  3. Chiang PY, Yeh AI. 2002. Effect of soaking on wet-milling of rice. J. Cereal Sci. 35: 86-94.
  4. Choi BK, Kum JS, Lee HY, Park JD. 2005. Quality characteristics of rice cake according to milling type and particle size. Korean J. Food Preserv. 12: 230-234.
  5. Djantou EB, Mbofung CM, Scher J, Desobry S. 2007. A modelling approach to determine the effect of pre-treatment on the grinding ability of dried mangoes for powder production (Mangifera indica var Kent). J. Food Eng. 80: 668-677. https://doi.org/10.1016/j.jfoodeng.2006.07.003
  6. Indira TN, Bhattacharya S. 2006. Grinding characteristics of some legumes. J. Food Eng. 76: 113-118. https://doi.org/10.1016/j.jfoodeng.2005.04.040
  7. Jang MS, Kim SK, Kim BN. 1989. Kinetic studies on hydration of Olchal and Hankangchalbyeo waxy rices. Korean J. Food Sci. Technol. 21: 313-319.
  8. Kim WS, Shin MS. 2007. The properties of rice flours prepared by dry- and wet-milling of soaking glutinous and normal grains. Korean J Food Cookery Sci. 23: 908-918.
  9. Kim SK, Bang JB. 1996. Physicochemical properties of rice affected by steeping conditions. Korean J. Food Sci. Technol. 28: 1026-1032.
  10. Kum JS, Lee HY. 1999. The effect of the varieties and particle size on the properties of rice flour. Korean J. Food Sci. Technol. 148: 1542-1548.
  11. Lee MH, Lee YT. 2006. Bread-making properties of rice flours produced by dry, wet and semi-wet milling. J. Korean Soc. Food Sci. Nutr. 35: 886-890. https://doi.org/10.3746/jkfn.2006.35.7.886
  12. Lee MK, Kim JO, Shin MJ. 2004. Properties of nonwaxy rice flours with different soaking time and particle sizes. Korean J. Food Sci. Technol. 36: 268-275.
  13. Lee YJ, Lee MG, Yoon WB. 2013. Effect of seed moisture content on the grinding kinetics, yield and quality of soybean oil. J. Food Eng. 119: 758-764. https://doi.org/10.1016/j.jfoodeng.2013.06.034
  14. Nishita KD, Bean, MM. 1982. Grinding methods: their impact on rice flour properties. Cereal Chem. 59: 46-49.
  15. Sharma P, Chakkaravarthi A, Singh V, Subramanian R. 2008. Grinding characteristics and batter quality of rice in different wet grinding systems. J. Food Eng. 88: 499-506. https://doi.org/10.1016/j.jfoodeng.2008.03.009
  16. Solanki SN, Subramanian R, Singh V, Ali SZ, Manohar B. 2005. Scope of colloid mill for industrial wet grinding for batter preparation of some Indian snack foods. J. Food Eng. 69: 23-30. https://doi.org/10.1016/j.jfoodeng.2004.07.007
  17. Song JS, Oh MS. 1992. Effect of cooking with pressure cooker and particle size of rice flour on quality characteristics of packsulgi. Korean J Food Cookery Sci. 8: 233-239.
  18. Walde SG, Balaswamy K, Velu V, Rao DG. 2002. Microwave drying and grinding characteristics of wheat (Triticum aestivum). J. Food Eng. 55: 271-276. https://doi.org/10.1016/S0260-8774(02)00101-2