DOI QR코드

DOI QR Code

Effect of Maturity Stage at Harvest on Antioxidant Capacity and Total Phenolics in Kiwifruits (Actinidia spp.) Grown in Korea

  • Lee, Inil (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Im, Sungbin (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Jin, Cheng-Ri (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Heo, Ho Jin (Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Cho, Youn-Sup (Fruit Research Institute, Jeollanam-do Agricultural Research and Extension Services) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Dae-Ok (Department of Food Science and Biotechnology, Kyung Hee University)
  • Received : 2015.07.06
  • Accepted : 2015.11.24
  • Published : 2015.12.31

Abstract

Six cultivars of kiwifruits grown in Korea, including Actinidia eriantha 'Bidan', A. arguta 'Chiak', A. arguta 'Darae No. 2', A. chinensis 'Haegeum', A. chinensis 'Haehyang', and $A.\;arguta{\times}A.\;deliciosa$ 'Mansoo', were harvested at various maturity stages to test whether kiwifruit maturity has an influence on antioxidant capacity or total phenolic and flavonoid contents. Kiwifruit extracts were isolated using absolute methanol and then 80% ($v{\cdot}v^{-1}$) aqueous methanol during homogenization. 'Bidan', collected at the second harvest stage, contained the greatest amount of total phenolics (775.3 mg gallic acid $equivalents{\cdot}100g^{-1}$ fresh weight) and had the highest antioxidant capacity [816.5, 633.2, and 2,662.7 mg vitamin C $equivalents{\cdot}100g^{-1}$ fresh weight for 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) scavenging, 1,1-diphenyl-2-picrylhydrazyl scavenging, and oxygen radical absorbance capacity assays, respectively] among cultivars tested, while 'Haehyang', collected at the first harvest, contained the greatest amount of total flavonoids (13.1 mg catechin $equivalents{\cdot}100g^{-1}$ fresh weight). Kiwifruit cultivar and genotype influenced antioxidant capacity, as well as total phenolic and flavonoid contents. No trend, however, was observed in total phenolic and flavonoid contents, and in the antioxidant capacity with respect to maturity stage. Antioxidant capacity had a higher linear correlation coefficient with total phenolic contents than with total flavonoid contents. The results above suggest that kiwifruits at various maturity stages are a valuable source of phenolics and antioxidants for industrial application and consumer health benefit.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Apak, R., S. Gorinstein, V. Bohm, K.M. Schaich, M. Ozyurek, and K. Guclu. 2013. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 85:957-998. https://doi.org/10.1351/PAC-REP-12-07-15
  2. Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  3. Cho, E.J., H.-M. Ju, C.H. Jeong, S.H. Eom, H.J. Heo, and D.-O. Kim. 2011. Effect of phenolic extract of dry leaves of Lespedeza cuneata G. Don on antioxidant capacity and tyrosinase inhibition. Korean J. Hortic. Sci. Technol. 29:358-365.
  4. Cho, H.S., Y.S. Jo, I.S. Liu, and C.S. Ahn. 2007. Characteristics of Actinidia deliciosa${\times}$A. arguta and $A.\;arguta{\times}A.\;deliciosa$ hybrids. Acta Hortic. 753:205-210.
  5. Chun, O.K., D.-O. Kim, N. Smith, D. Schroeder, J.T. Han, and C.Y. Lee. 2005. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food. Agric. 85:1715-1724. https://doi.org/10.1002/jsfa.2176
  6. Fisk, C.L., M.R. McDaniel, B.C. Strik, and Y. Zhao. 2006. Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta 'Ananasnaya') as affected by harvest maturity and storage. J. Food Sci. 71:S204-S210. https://doi.org/10.1111/j.1365-2621.2006.tb15642.x
  7. Floegel, A., D.-O. Kim, S.-J. Chung, S.I. Koo, and O.K. Chun. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24:1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008
  8. Huang, D., B. Ou, M. Hampsch-Woodill, J.A. Flanagan, and R.L. Prior. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50:4437-4444. https://doi.org/10.1021/jf0201529
  9. Huang, D., B. Ou and R.L. Prior. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841-1856. https://doi.org/10.1021/jf030723c
  10. Hwang, J.-S., B.H. Lee, X. An, H.R. Jeong, Y.-E. Kim, I. Lee, H. Lee, and D.-O. Kim. 2015. Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri. Korean J. Food Sci. Technol. 47:261-266. https://doi.org/10.9721/KJFST.2015.47.2.261
  11. Jia, Z., M. Tang and J. Wu. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  12. Jo, Y.S., H.S. Cho, M.Y. Park, and G.P. Bang. 2007. Selection of a sweet Actinidia eriantha, 'Bidan'. Acta Hortic. 753:253-258.
  13. Jung, K.-A., T.-C. Song, D. Han, I.-H. Kim, Y.-E. Kim, and C.-H. Lee. 2005. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull. 28:1782-1785. https://doi.org/10.1248/bpb.28.1782
  14. Kim, C.-W., S.-I. Oh, M.-J. Kim, and Y. Park. 2014. Optimal harvest time by the seasonal fruit quality and ripening characteristics of hardy kiwifruit in Korea. J. Korean For. Soc. 103:353-358. https://doi.org/10.14578/jkfs.2014.103.3.353
  15. Kim, D.-O. and C.Y. Lee. 2004. Comprehensive study of vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44:253-273. https://doi.org/10.1080/10408690490464960
  16. Lee, I., B.H. Lee, S.H. Eom, C.-S. Oh, H. Kang, Y.-S. Cho, and D.-O. Kim. 2015. Antioxidant capacity and protective effects on neuronal PC-12 cells of domestic bred kiwifruit. Korean J. Hortic. Sci. Technol. 33:259-267. https://doi.org/10.7235/hort.2015.14123
  17. Lim, D., W. Kim, M.-G. Lee, H.J. Heo, O.K. Chun, and D.-O. Kim. 2012. Evidence for protective effects of coffees on oxidative stress-induced apoptosis through antioxidant capacity of phenolics. Food Sci. Biotechnol. 21:1735-1744. https://doi.org/10.1007/s10068-012-0231-x
  18. Lim, Y.J., C.-S. Oh, Y.-D. Park, D.-O. Kim, U.-J. Kim, Y.-S. Cho, and S.H. Eom. 2014. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23:943-949. https://doi.org/10.1007/s10068-014-0127-z
  19. Lima, G.P.P., F. Vianello, C.R. Correa, R.A. da Silva Campos, and M.G. Borguini. 2014. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 5:1065-1082. https://doi.org/10.4236/fns.2014.511117
  20. Mohsenzadegan, M. and A. Mirshafiey. 2012. The immunopathogenic role of reactive oxygen species in Alzheimer disease Iran. J. Allergy Asthma Immunol. 11:203-216.
  21. Motohashi, N., Y. Shirataki, M. Kawase, S. Tani, H. Sakagami, K. Satoh, T. Kurihara, H. Nakashima, I. Mucsi, A. Varga, and J. Molnar. 2002. Cancer prevention and therapy with kiwifruit in Chinese folklore medicine: A study of kiwifruit extracts. J. Ethnopharmacol. 81:357-364. https://doi.org/10.1016/S0378-8741(02)00125-3
  22. Pal, R.S., V.A. Kumar, S. Arora, A.K. Sharma, V. Kumar, and S. Agrawal. 2015. Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Braz. Arch. Biol. Technol. 58:262-271. https://doi.org/10.1590/s1516-8913201500371
  23. Pandey, K.B. and S.I. Rizvi. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:270-278. https://doi.org/10.4161/oxim.2.5.9498
  24. Park, K.L., S.W. Hong, Y.J. Kim, S.J. Kim, and K.S. Chung. 2013. Manufacturing and physicochemical properties of wine using hardy kiwi fruit (Actinidia arguta). Korean J. Microbiol. Biotechnol. 41:327-334. https://doi.org/10.4014/kjmb.1301.01002
  25. Park, Y.-S., S.-T. Jung, S.-G. Kang, E. Delgado-Licon, E. Katrich, Z. Tashma, S. Trakhtenberg, and S. Gorinstein. 2006a. Effect of ethylene treatment on kiwifruit bioactivity. Plant Food Hum. Nutr. 61:151-156. https://doi.org/10.1007/s11130-006-0025-5
  26. Park, Y.-S., H. Leontowicz, M. Leontowicz, J. Namiesnik, M. Suhaj, Milena Cvikrova, O. Martincova, M. Weisz, and S. Gorinstein. 2011. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. J. Food Compos. Anal. 24:963-970. https://doi.org/10.1016/j.jfca.2010.08.010
  27. Park, Y.S., S.T. Jung, and S. Gorinstein. 2006b. Ethylene treatment of 'Hayward' kiwifruits (Actinidia deliciosa) during ripening and its influence on ethylene biosynthesis and antioxidant activity. Sci. Hortic. 108:22-28. https://doi.org/10.1016/j.scienta.2006.01.001
  28. Shaw, P.X., G. Werstuck, and Y. Chen. 2014. Oxidative stress and aging diseases. Oxid. Med. Cell. Longev. 569146.
  29. Singleton, V.L. and J.A. Rossi, Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144-158.
  30. Sommerburg, O., J.E.E. Keunen, A.C. Bird, and F.J.G.M. van Kuijk. 1998. Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. Br. J. Ophthalmol. 82:907-910. https://doi.org/10.1136/bjo.82.8.907
  31. Sosa, V., T. Moline, R. Somoza, R. Paciucci, H. Kondoh, and M.E. LLeonart. 2013. Oxidative stress and cancer: An overview. Ageing Res. Rev. 12:376-390. https://doi.org/10.1016/j.arr.2012.10.004
  32. Tavarini, S., E. Degl'Innocenti, D. Remorini, R. Massai, and L. Guidi. 2008. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 107:282-288. https://doi.org/10.1016/j.foodchem.2007.08.015
  33. Tsantili, E., K. Konstantinidis, M.V. Christopoulos, and P.A. Roussos. 2011. Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Sci. Hortic. 129:694-701. https://doi.org/10.1016/j.scienta.2011.05.020
  34. Yoo, K.M., D.-O. Kim, and C.Y. Lee. 2007. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16:177-182.

Cited by

  1. Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells vol.26, pp.8, 2016, https://doi.org/10.4014/jmb.1603.03009
  2. Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.) vol.26, pp.1, 2017, https://doi.org/10.1007/s10068-017-0030-5
  3. Antioxidant compounds of kiwifruit during post-ripening process at ambient temperature vol.231, pp.None, 2015, https://doi.org/10.1088/1757-899x/231/1/012121
  4. Evaluation of biochemical components and antioxidant capacity of different kiwifruit (Actinidia spp.) genotypes grown in China vol.32, pp.3, 2015, https://doi.org/10.1080/13102818.2018.1443400
  5. 된장과 고추장 키위장아찌의 기능성 및 관능 특성 vol.50, pp.2, 2015, https://doi.org/10.9721/kjfst.2018.50.2.238
  6. Characteristics and pro-health properties of mini kiwi (Actinidia arguta) vol.60, pp.2, 2015, https://doi.org/10.1007/s13580-018-0107-y
  7. A Comparison Investigation on Antioxidant Activities, Physicochemical Properties and Phytochemical Contents of Kiwifruit Genotypes and Cultivars vol.19, pp.2, 2015, https://doi.org/10.1080/15538362.2018.1485537
  8. Analysis of Polyphenolic Content and Antioxidant Activity of Four Dark Skin Grapes vol.145, pp.None, 2020, https://doi.org/10.1051/e3sconf/202014501005
  9. Effect of hot air drying on the polyphenol profile of Hongjv ( Citrus reticulata Blanco, CV. Hongjv) peel: A multivariate analysis vol.44, pp.5, 2020, https://doi.org/10.1111/jfbc.13174
  10. Changes of phenolic compounds, antioxidant capacities, and inhibitory effects on digestive enzymes of kiwifruits (Actinidia chinensis) during maturation vol.14, pp.3, 2015, https://doi.org/10.1007/s11694-020-00424-1
  11. Characterization of Bioactive Ligands with Antioxidant Properties of Kiwifruit and Persimmon Cultivars Using In Vitro and in Silico Studies vol.10, pp.12, 2020, https://doi.org/10.3390/app10124218
  12. Dynamic Changes of Phenolic Compounds and Their Associated Gene Expression Profiles Occurring during Fruit Development and Ripening of the Donghong Kiwifruit vol.68, pp.41, 2015, https://doi.org/10.1021/acs.jafc.0c04438
  13. Changes in phenolics, soluble solids, vitamin C, and antioxidant capacity of various cultivars of hardy kiwifruits during cold storage vol.29, pp.12, 2015, https://doi.org/10.1007/s10068-020-00822-7
  14. Kiwifruit (Actinidia spp.): A review of chemical diversity and biological activities vol.350, pp.None, 2015, https://doi.org/10.1016/j.foodchem.2020.128469