DOI QR코드

DOI QR Code

Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine

제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구

  • Kim, Hu Sik (Department of Applied Chemistry, Andong National University) ;
  • Kim, Young Hun (Department of Environmental Engineering, Andong National University) ;
  • Baek, Ki Tae (Department of Environmental Engineering, Chonbuk National University) ;
  • Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
  • Received : 2015.11.27
  • Accepted : 2015.12.17
  • Published : 2015.12.30

Abstract

The six natural zeolites collected in Pohang area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are modenite, albite, and quarts in Kuryongpo-A (Ku-A), Kuryongpo-B (Ku-B), Kuryongpo-C (Ku-C), Donghae-A (Dh-A), Donghae-B (Dh-B), and Donghae-C (Dh-C) samples. The XRF analysis showed that the six zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo-C (Ku-C) zeolite was the highest compared to other zeolites. The capabilities of removing heavy metal ions such as $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ were compared. The effect of reaction time in removing heavy metal ions was studied. The experimental results showed that the efficiency of removal was low for $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ ions. These may be caused by the low content of zeolite in the six natural zeolites. This indicates that the adsorption capacity roughly tends to depend on the zeoite contents, ie., the grade of zeolite ore.

국내 경상북도 포항 지역에서 채취한 6종의 천연 제올라이트를 X-선 회절, X-선 형광분석, 열시차 분석, 열중량 분석 및 양이온교환능 분석을 통해 특성분석을 수행하였다. 이들 제올라이트의 주성분은 구룡포A (Ku-A), 구룡포B (Ku-B), 구룡포C (Ku-C), 동해A (Dh-A), 동해B (Dh-B), 동해C (Dh-C) 모두 모데나이트, 알바이트 및 석영이 함유되어 있었다. 6종의 제올라이트는 Si, Al, Na, K, Mg, Ca, Fe을 함유하고 있었으며 구룡포C (Ku-C) 제올라이트의 양이온 교환능이 다른 지역의 제올라이트 보다 높게 나타났다. 6종의 천연 제올라이트를 이용하여 $Pb^{2+}$, $Cd^{2+}$$Cu^{2+}$ 등의 중금속 이온을 제거하는데 소요되는 반응 시간의 효과를 비교하였다. 6종의 천연 제올라이트 모두 $Pb^{2+}$, $Cd^{2+}$$Cu^{2+}$ 제거율이 매우 낮게 나타났다. 이는 6종의 천연 제올라이트에 함유된 제올라이트의 함량이 매우 낮기 때문으로 판단된다. 본 연구 결과는 제올라이트 광석의 중금속 흡착능력은 제올라이트의 함량, 즉 광석의 품위에 크게 의존되는 경향을 보여주고 있다.

Keywords

References

  1. Ames, L.L. (1960) The cation sieve properties of clinoptilite. American Mineralogist, 45, 689-700.
  2. Bailey, S.E., Olin, T.J., Brica, R.M., and Adrian, D.D. (1999) A review of potentially low coats sorbents for heavy metals. Water Research, 33, 2469-2479. https://doi.org/10.1016/S0043-1354(98)00475-8
  3. Breck, D.W. (1974) Zeolite Molecular Sieves. John Wiley & Sons, New York, 529 p.
  4. Cabrera, C., Gabaldon, C., and Marzel, P. (2005) Technical note sorption characteristics of heavy metal ions by a natural zeolite. Journal of Chemical Technology and Biotechnology, 80, 477-481. https://doi.org/10.1002/jctb.1189
  5. Choi, E.Y. and Kim, Y. (1999) Two anhydrous Zeolite X crystal structures, $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$ and $Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$. Journal of the Korean Chemical Socity, 43, 384-392.
  6. Colelia, C. (1996) Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31, 554-562. https://doi.org/10.1007/BF00196136
  7. Colin, A.F., Jeremy, L.B., and Lau, Y.L. (2001) Solid-state NMR detection, characterization, and quantification of the multiple aluminum environments in US-Y catalysts by $^{27}Al$ MAS and MQMAS experiments at very high fied. Journal of the American Chemical Society, 123, 5285-5291. https://doi.org/10.1021/ja003210k
  8. Erdem, E., Karapinar, N., and Donat, R. (2004) The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309-314. https://doi.org/10.1016/j.jcis.2004.08.028
  9. Inglezakis, V.J., Loizidou, M.D., and Grigoropoulou, H.P. (2003) Ion exchange of $Pb^{2+}$, $Cu^{2+}$, $Fe^{3+}$, and $Cr^{3+}$ on natural clinoptilolite selectivity determination and influence of acidity on metal uptake. Journal of Colloid and Interface Science, 261, 49-54. https://doi.org/10.1016/S0021-9797(02)00244-8
  10. Kim, H.S., Ko, S.O., and Lim, W.T. (2011)Single-crystal structure of partially dehydrated partially$Mg^{2+}$-exchanged Zeolite Y (FAU),${\left}|Mg_{30.5}Na_{14}(H_2O)_{2.5}{\right}|[Si_{117}Al_{75}O_{384}]$-FAU. Bulletin of theKorean Chemical Society, 32, 3696-3701. https://doi.org/10.5012/bkcs.2011.32.10.3696
  11. Kim, H.S., Park, W.K., Lee, H.Y., Park, J.S., and Lim, W.T. (2014) Characterization of natural zeolite for removal of radioactive nuclides. Journal of Mineralogical Society of Korea, 27, 41-51 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.1.41
  12. Kim, Y., Kim, D.S., Jang, S.B., and Park, S.Y. (1996b) Studies on the removal of metal ions with domestic pohang zeolites and synthetic zeolites. Journal of Korean Society of Environmental Engineers, 18, 587-602 (in Korean with English abstract).
  13. Kocaoba, S., Orhan, Y., and Akyuz, T. (2007) Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite. Desalination, 214, 1-10. https://doi.org/10.1016/j.desal.2006.09.023
  14. Lim, W.T., Jang, B.D., Park, M., Jung, S.W., Chang, C.W., and Heo, N.H. (2002) A study on the synthesis of pure zeolite Rho. Journal of Korean Industrial and Engineering Chemistry, 13, 1-6 (in Korean with English abstract).
  15. Lim, W.T., Seo, S.M., Kim, K.H., Lee, H.S., and Seff, K. (2007) Six single-crystal structures showing the dehydration, deamination, dealumination, and decomposition of $NH_4^+$-Exchanged Zeolite Y (FAU) with increasing evacuation temperature. Identification of a Lewis acide site. The Journal of Physical Chemistry C, 111, 18294-18306. https://doi.org/10.1021/jp0742721
  16. Lin, S.H. and Juang, R.S. (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials B, 92, 315-326. https://doi.org/10.1016/S0304-3894(02)00026-2
  17. Misaelides, P., Godelitsas, A., Charision, V., Ioannou, D., and Charistos, D. (1994) Heavy metal uptake by zeoliferous rocks from metaxades, thrace, greece: an exploratory study. Journal of Radioanalytical and Nuclear Chemistry, 183, 159-166. https://doi.org/10.1007/BF02043129
  18. Noh, J.H. (2003) Study of utilization of natural zeolites as functional materials for water purification (II): Adsorption properties of heavy metal ions by domestic zeolites. Journal of Mineralogical Society of Korea, 16, 201-213 (in Korean with English abstract).
  19. Peric, J., Trgo, M., and Vukojevic., M.N. (2004) Removal of zinc, copper and lead by natural zeolite a comparision of adsorption isotherms. Water Research, 38, 1893-1899. https://doi.org/10.1016/j.watres.2003.12.035
  20. Seo, G. (2005 a) Introduction of zeolite. Chonnam National University Press, Gwangju, 20 p.
  21. Seo, G. (2005 b) Introduction of zeolite. Chonnam National University Press, Gwangju, 192 p.
  22. Shanableh, A. and Kharabsheh A. (1996) Stabilization of Cd, Ni and Pb insoil using natural zeolite. Journal of Hazardous Materials, 45, 207-217. https://doi.org/10.1016/0304-3894(95)00093-3
  23. Shin, E.C., Park, J.J., Jeong, C.G., and Kim, S.H. (2014) Adsorption characteristics evaluation of natural zeolite for heavy-metal contaminated material remediation. Jorunal of Korean Geosynthetis Socity, 13, 59-67 (in Korean with English abstract). https://doi.org/10.12814/jkgss.2014.13.2.059
  24. Wingenfelder, U., Hansen, C., Furrer, G., and Schulin, R. (2005) Removal of heavy metals from mine waters by natural zeolites. Environmental Science and Technology, 39, 4606-4613. https://doi.org/10.1021/es048482s

Cited by

  1. 양이온교환용량이 다른 제올라이트 처리에 따른 밭토양 내 중금속 안정화 평가 vol.59, pp.5, 2015, https://doi.org/10.5389/ksae.2017.59.5.041
  2. 제올라이트 및 활성 황토를 혼입한 모르타르의 역학적 특성 평가 vol.7, pp.4, 2015, https://doi.org/10.14190/jrcr.2019.7.4.405