DOI QR코드

DOI QR Code

Effects on Growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought

온도 증가와 건조 스트레스가 백합나무의 생장, 광합성 및 광색소 함량에 미치는 영향

  • Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부)
  • Received : 2015.01.21
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

This study was conducted to investigate the effects of high temperature and drought on growth performance, photosynthetic parameters and photosynthetic pigment contents of Liriodendron tulipifera L. seedlings. The seedlings were grown in controlled-environment growth chambers with combinations of four temperature ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water status (control, drought). Temperature rise increased growth, total dry weight and leaf area in all water status. Also photosynthetic rate, dark respiration, stomatal conductance and transpiration rate increased with increasing temperature. In contrast, growth and photosynthetic parameters of L. tulipifera seedlings were lower in $-3^{\circ}C$ than $0^{\circ}C$. But temperature rise decreased water use efficiency in all water status. Temperature rise increased photosynthetic pigment contents of leaf. Also chlorophyll a/b ratio increased with increasing temperature. In conclusion, the elevated temperature lead to causes growth increase through the increase of energy production by higher photosynthetic rate during a growth period of L. tulipifera seedlings.

본 연구는 국내 주요 조림수종인 백합나무 유묘의 온도 증가와 건조 스트레스에 따른 생장 및 생리 반응변화를 알아보고자 실시하였다. 온도 제어는 국립산림과학원 산림유전자원부(경기도 수원시 권선구 온정로 39)의 환경제어실 인공 광 챔버를 이용하였다. 처리 온도는 Fig. 1과 같이 최근 30년 동안(1981-2010) 우리나라 전국 월 평균을 기준으로 $-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$로 설정하였다. 건조 처리는 6월부터 대조구와 건조 처리구로 구분하여 대조구는 충분히 관수하여 최저 -0.1 MPa 이상의 토양 수분 포텐셜을 유지시켰고, 건조처리구는 유묘의 잎에 초기위조 현상이 나타날 때까지 관수를 하지 않았다. 온도 증가 및 건조 스트레스에 따른 백합나무 유묘의 근원경과 수고의 상대생장율은 대조구와 건조 처리구 모두 온도가 증가할수록 높은 상대 생장율을 나타냈으며, 대조구와 건조 처리간에는 차이가 없었다. 또한 백합나무 유묘의 엽면적과 총 건중량을 측정한 결과, 근원경 및 수고 생장과 같은 경향으로 온도가 증가할수록 엽면적과 총 건중량이 증가하였다. 근원경, 수고, 엽면적 및 총 건중량 모두 건조 처리구 내 $-3^{\circ}C$ 처리구에서 가장 낮은 값을 나타내 백합나무 유묘는 온도 증가보다 저온에 의해서 피해를 입는 것으로 생각된다. 광합성 속도, 암호흡 속도, 기공전도도 및 증산속도도 대조구와 건조 처리구 모두 온도가 증가할수록 증가하였고, 저온 처리구인 $-3^{\circ}C$ 처리구에서 가장 낮은 값을 보였다. 그러나 수분 이용효율은 온도가 증가할수록 감소하는 경향을 보였다. 총 엽록소 및 카로테노이드 함량도 대조구와 건조 처리구 모두 온도가 증가할수록 함량이 증가하였다. 결론적으로, 온도 증가는 백합나무 유묘의 생리적 반응에 긍정적인 영향과 함께 생장을 촉진시키는 것으로 판단된다. 그러나 온도 감소는 백합나무 유묘의 생장 및 생리적 반응에 부정적인 영향을 미쳐, 생장이 저하되는 것을 알 수 있었다.

Keywords

References

  1. Arend, M., T. Kuster, M. S. Gunthardt-Goerg, M. Dobbertin, and M. Abrams, 2011: Provenance specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31, 287-297. https://doi.org/10.1093/treephys/tpr004
  2. Barber, V. A., G. P. Juday, and B. P. Finney, 2000: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668-673. https://doi.org/10.1038/35015049
  3. Beadle, C. L., 1993: Growth analysis. In D.O. Hall, J. M. O. Scurlock. H.R. Bolhar-Nordenkampf, R.C. Leegood and S.P. Long(eds.). Photosynthesis and production in a changing environment a field and laboratory manual. Chapman Hall, London, pp. 36-46.
  4. Beck, D. E., 1990: In silvics of North America volume 2, hardwoods. P. 406-416. Russell M. B. and Barbara H. H.(eds.) USDA, Agriculture Handbook No. 654. Washington, D.C.
  5. Chaves, M. M., and M. M. Oliveira, 2004: Mechanisms underlying plant resilience to water deficits: prospects of water-saving agriculture. Journal of Experimental Botany 55, 2365-2384. https://doi.org/10.1093/jxb/erh269
  6. Cornic, G., 2000: Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science 5, 1360-1385.
  7. Danby, R., and D. Hik, 2007: Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13, 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  8. Duncan, D. R., and J. M. Widholm, 1987: Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiology 83, 703-708. https://doi.org/10.1104/pp.83.3.703
  9. Ericsson, T., L. Rytter, and E. Vapaavuori, 1996: Physiology of carbon allocation in trees. Biomass and Bioenergy 11, 115-127. https://doi.org/10.1016/0961-9534(96)00032-3
  10. Gimenez, C., V. J. Mitchell, and D. W. Lawlor, 1992: Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology 98, 516-524. https://doi.org/10.1104/pp.98.2.516
  11. Hamid, N., F. Jawaid, and D. Amin, 2009: Effect of shortterm exposure to two different carbon dioxide concentrations on growth and some biochemical parameters of edible beans (Vigna radiate and Vigna unguiculata). Pakistan Journal of Botany 41, 1931-1836.
  12. Han, C., Q. Liu, and Y. Y, 2009: Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Pices asperata seedlings. Plant Growth Regulation 58, 153-162. https://doi.org/10.1007/s10725-009-9363-2
  13. Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1322-1334.
  14. Iglesias, D. J., A. Calatayud, E. barreno, E. P. Millo, and M. Talon, 2006: Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanism and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131. https://doi.org/10.1016/j.plaphy.2006.03.007
  15. Kim, H. Y., J. W. Lee, T. W. Jeffries, and I. G. Choi, 2011: Evaluation of oxalic acid pretreatment condition using response surface method for producing bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by simultaneous saccharification and fermentation. Mokchae Konghak 39(1), 75-85.
  16. Kim, Y. W., and H. K. Moon, 2013: Comparison of physiological characteristics, stomata and DNA content between seedling and 5-year-old somatic plant (somatic embryo derived-plant) in Liriodendron tulipifera. Journal of Korean Forestry Society 102, 537-542. https://doi.org/10.14578/jkfs.2013.102.4.537
  17. Kilpelainen, A., H. Peltola, A. Ryyppo, K. Sauvala, K. Laitinen, and S. Kellomaki, 2003: Wood properties of scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiology 23, 889-897. https://doi.org/10.1093/treephys/23.13.889
  18. Kirschbaum, M. U. F., 2004: Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology 6, 242-253. https://doi.org/10.1055/s-2004-820883
  19. Koch, G. W., S. C. Sillet, G. M. Jennings, and S. D. Davis, 2004: The limits to tree height. Nature 428, 851-854. https://doi.org/10.1038/nature02417
  20. Korea Forest Research Institute., 2008: Yellow Poplar (Liriodendron tulipifera L.) - Growth characteristics and utilization technique. Research Republic Korea Forest research Institute. 320pp.
  21. Kratsch, H. A., and R. R. Wise, 2000: The ultrastructure of chilling stress. Plant, Cell and Environment 23, 337-350. https://doi.org/10.1046/j.1365-3040.2000.00560.x
  22. Larcher, W., 1995: Physiological Plant Physiology. Springer, New York, 97-105.
  23. Lawson, T., K. Oxborough, J. I. L. Morison, and N. R. Baker, 2003: The responses of guard and mesophyll cell photosynthesis to $CO_2$, $O_2$, light, and water stress in a range of species are similar. Journal of Experimental Botany 54, 1743-1752. https://doi.org/10.1093/jxb/erg186
  24. Lee, H. S., S. J. Lee, J. C. Lee, K. W. Kim, and P. G. Kim, 2013: Effects of elevated CO2 concentration and temperature on physiological characters of Liriodendron tulipifera. Korean Journal of Agricultural and Forest Meteorology 15, 145-152. https://doi.org/10.5532/KJAFM.2013.15.3.145
  25. Lim, C. S., 2010: Selection of cultivars and organic solvents to improve fruit set of greenhouse watermelon during cold period. Journal of Bio-Environment Control 19, 147-152.
  26. Reyes, E., and P. H. Jennings, 1994: Response of cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L. var. melopepo) roots to chilling stress during early stages of seedling development. Journal of the American Society for Horticultural Science 119, 964-970.
  27. Richard, J. N., M. L. Tammy, S. H. R. Jennifer, and G. O. N. Elizabeth, 2000: Nitrogen resorption in senescing tree leaves in a warmer; $CO_2$-enriched atmosphere. Plant and Soil 224, 15-29. https://doi.org/10.1023/A:1004629231766
  28. Ro, H. M., P. G. Kim, and I. B. Lee, 2001: Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. Cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15, 195-203. https://doi.org/10.1007/s004680100099
  29. Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch, 2001: A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562. https://doi.org/10.1007/s004420000544
  30. Ryu, K. O., S. S. Jang, W. Y. Choi, and H. E. Kim, 2003: Growth performance and adaptation of Liriodendron tulipifera in Korea. Journal of Korean Forestry Society 92, 515-525.
  31. Ryu, K. O., M. S. Han, E. R. Noh, and I. S. Kim, 2014: Age-age correlation on volume growth of Yellow Poplar (Liriodendron tulipifera L.). Journal of Agriculture & Life Science 48, 13-23
  32. Shao, H. B., L. Y. Chu, M. A. Shao, A. J. Cheruth, and H. M. Mi, 2008: Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies 331, 433-441. https://doi.org/10.1016/j.crvi.2008.03.011
  33. Tatjana, T., B. S. Jurate, U. Akvile, V. Ilona, S. Giedre, D. Pavelas, and S. Algirdas, 2007: Effects of nitrogen fertilizers on whear photosynthetic pigment and carbohydrate contents. Biologija 53, 80-84.
  34. Toth, V. R., I. Meszaros, S. Veres, and J. Nagy, 2002: Effects of the available nitrogen on the photosynthetic activity and xanthophylls cycle pool of maize in field. Journal of Plant Physiology 159, 627-634. https://doi.org/10.1078/0176-1617-0640
  35. Verhoeven, A. S., D. A. Barbara, and W. A. William, 1997: Enhanced employement of the xanthophylls cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology 113, 817-824. https://doi.org/10.1104/pp.113.3.817
  36. Volder, A., E. J. Edwards, J. R. Evans, B. C. Robertson, M. Schortemeyer, and R. M. Gifford, 2004: Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric $CO_2$? New Phytologist 162, 397-411. https://doi.org/10.1111/j.1469-8137.2004.01025.x
  37. Way, D. A., and R. Oren, 2010: Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30, 669-688. https://doi.org/10.1093/treephys/tpq015
  38. Wu, Z., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate, 2011: Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17, 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
  39. Yin, H. J., Q. Liu, and T. Lai, 2008: Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23, 459-469. https://doi.org/10.1007/s11284-007-0404-x
  40. Zhao, C. and Q. Liu, 2009: Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39, 1-11. https://doi.org/10.1139/X08-152
  41. Climate Change Information Center. 2014: RCP 8.5 scenario. http://www.climate.go.kr:8005/index.html

Cited by

  1. Effects of Water Stress on Carotenoid and Proline Contents in Kale (Brassica oleracea var. acephala) leaves vol.36, pp.2, 2017, https://doi.org/10.5338/KJEA.2017.36.2.16