DOI QR코드

DOI QR Code

Assessment of the potential for geological storage of CO2 based on structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea

한반도 남동부 마이오세 장기분지 내 CO2 지중저장 가능성 평가를 위한 지질구조/퇴적학 연구

  • Kim, Min-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Gihm, Yong Sik (Department of Petroleum Resources Technology, University of Science and Technology) ;
  • Son, Eui-Young (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Hwang, In Gul (Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Shinn, Young Jae (Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources) ;
  • Choi, Hunsoo (Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources)
  • 김민철 (부산대학교 지질환경과학과) ;
  • 김용식 (과학기술연합대학원대학교 석유자원공학과) ;
  • 손의영 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • 황인걸 (한국지질자원연구원 석유해저연구본부) ;
  • 신영재 (한국지질자원연구원 석유해저연구본부) ;
  • 최헌수 (한국지질자원연구원 석유해저연구본부)
  • Received : 2014.12.12
  • Accepted : 2015.05.08
  • Published : 2015.06.30

Abstract

Preliminary assessment of the potential for structural domain and suitable reservoir/seal assemblages was performed in the Early Miocene Janggi Basin to evaluate an onshore site of geological $CO_2$ storage (10,000-ton class). The basin is divided into five structural domains, i.e. Guryongpo, Ocheon, Noeseongsan, and Yeongamri blocks and Yangpo Subbasin, based on relative chronology and bedding attitude of the basin fills. On the basis of the structural and stratigraphic features of each domain, it is estimated that southern part of the Noeseongsan Block is the most suitable area. Evidences of northwestward block-tilting and volcanogenic collapse are well observed in this area, and thus the depth of basin floor meets the requirements of $CO_2$ storage. Basin fills are classified into three conformable stratigraphic units, i.e. Janggi Conglomerate, Seongdongri Formation, and Noeseongsan Basaltic rocks in ascending order, based on the lithological and compositional characteristics of volcanogenic materials. Janggi Conglomerate is mainly composed of conglomerates intercalated with dacitic tuffaceous sandstones, and this may imply that the layer has relatively high porosity and permeability. The overlying Seongdongri Formation includes at least four dacitic lapilli tuff layers that have a large amount of poorly-sorted lapilli-sized pumices and lithic fragments in crystal- and glass-rich matrix. The tuffs are intercalated with relatively well-sorted and fine-grained tuffaceous sediments. The topmost Noeseongsan Basaltic rocks consist of a variety of extrusive and intrusive volcanic rocks. Two upper strata are expected to have a lower permeability than the Janggi Conglomerate. The results of an exploratory drilling hole (JG-1), which are acquired in the Noeseongsan Block, show that basin depth of 1,003.5 m and existing stratigraphic trap are sufficient for $CO_2$ storage. The results of drilling log reveal that the Janggi Conglomerate (129.7 m in apparent thickness) unconformably overlying the basements is overlain by the thick Seongdongri Formation (753.7 m in apparent thickness). All the results indicate that the Janggi Basin can be one of the promising onshore sedimentary basins for the $CO_2$ storage in Korea.

국내 육상 1만 톤급 $CO_2$ 지중저장의 가능성 평가를 위해, 전기 마이오세 장기분지를 대상으로 지중저장에 적합한 유망 구조구역을 도출하고 지하 잠재 저장층 덮개층의 존재를 평가하였다. 장기분지는 충전물의 상대적 퇴적 시기와 지층의 자세를 근거로 구룡포, 오천, 뇌성산, 영암리지괴와 양포소분지로 구분된다. 이들 지괴 중 뇌성산지괴는 북서쪽으로 갈수록 분지심도가 깊어지며, 후기 현무암질 화산활동에 의해 함몰되어 지중저장을 위한 필요 심도의 조건을 충족할 가능성이 높다. 야외조사 결과, 분지충전물은 포함된 화산물질의 조성과 암상에 따라 하부로부터 장기역암, 성동리층, 뇌성산현무암질암으로 구분되며, 이들은 정합관계로 순차 피복한다. 장기역암은 주로 기반암 역을 다량 함유한 역암과 이에 협재하는 데사이트질 응회질(역질)사암으로 구성되어 지층의 전반적인 공극률과 투수율이 대체로 높다. 성동리층은 최소 4매의 데사이트질 응회암과 이와 교호하는 응회질 퇴적암으로 구성된다. 응회암은 결정편과 화산유리가 풍부한 기질 내에 다량의 부석, 암편, 탄화목을 포함하고 있으며, 응회질 퇴적암의 경우 분급과 원마도가 양호한 세립질 퇴적물이 우세하다. 뇌성산현무암질암은 용암류, 응회질 각력암과 관입암으로 구성된다. 따라서 장기역암을 피복하는 두 층은 상대적으로 투수도가 낮을 것으로 판단된다. 뇌성산지괴의 시추탐사 결과(JG-1), 장기역암(겉보기 두께 129.7 m)이 약 1,003.5 m 깊이의 분지기저에 퇴적되고 이를 성동리층(겉보기 두께 753.7 m)과 뇌성산현무암질암(겉보기 두께 120.1 m)이 피복함이 밝혀졌다. 이상의 결과들은 장기분지 뇌성산지괴의 지하심부에는 장기역암(잠재 저장층)이 분지기저를 따라 연장되고 그 상부를 성동리층과 뇌성산현무암질암(잠재 덮개층)이 두껍게 피복하고 있음을 지시하고 있어, 이곳에 $CO_2$ 지중저장을 위해 적절한 층서트랩이 존재할 가능성이 높은 것을 판단된다. 따라서 장기분지는 육상 $CO_2$ 지중저장 실증에 유망한 육상 퇴적분지로 평가된다.

Keywords

Acknowledgement

Supported by : (재) 한국이산화탄소 포집 및 처리 연구개발센터

References

  1. Bachu, S., 2008, $CO_2$ storage in geological media: role, means, status and barriers to deployment. Progress in Energy and Combustion Science, 34, 254-273. https://doi.org/10.1016/j.pecs.2007.10.001
  2. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P. and Mathiassen, O.M., 2007, $CO_2$ storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
  3. Bahk, J.J. and Chough, S.K., 1996, An interplay of synand intereruption depositional processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, 43, 421-438. https://doi.org/10.1046/j.1365-3091.1996.d01-19.x
  4. Blair, T.C. and Bilodeau, W.L., 1988, Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism. Geology, 16, 517-520. https://doi.org/10.1130/0091-7613(1988)016<0517:DOTCIR>2.3.CO;2
  5. Cheon, Y., Son, M., Song, C.W., Kim, J.-S. and Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geoscience Journal, 16, 253-273. https://doi.org/10.1007/s12303-012-0029-0
  6. Civile, D., Zecchin, M., Forlin, E., Donda, F., Volpi, V., Merson, B. and Persoglia, S., 2013, $CO_2$ geological storage in the Italian carbonate successions. International Journal of Greenhouse Gas Control, 19, 101-116. https://doi.org/10.1016/j.ijggc.2013.08.010
  7. Dutta, P. and Zoback, D.M., 2012, $CO_2$ sequestration into Wyodak coal seam of Powder River Basin - Preliminary reservoir characterization and simulation. International Journal of Greenhouse Gas Control, 9, 103-116. https://doi.org/10.1016/j.ijggc.2012.03.004
  8. Feng, Z., 2008, Volcanic rocks as prolific gas reservoir: A case study from the Qingshen gas field in the Songliao Basin, NE China. Marine and Petroleum Geology, 25, 416-432. https://doi.org/10.1016/j.marpetgeo.2008.01.008
  9. GGGP, 2011, KEITI's Special report for low carbon green growth. Korea Environmental Industry & Technology Institute, Special Issue Vol. 3, 230 p.
  10. Heinemann, N., Wilinson, M., Pickup, G.E., Haszeldine, R. and Cutler, N.A., 2012, $CO_2$ storage in the offshore UK Bunter Sandstone Formation. International Journal of Greenhouse Gas Control, 6, 210-219. https://doi.org/10.1016/j.ijggc.2011.11.002
  11. Hester, R.E. and Harrison, R.M., 2010, Carbon Capture: Sequestration and Storage. Royal Society of Chemistry, Cambridge, 308 p.
  12. Hill, B., Hovorka, S. and Melzer, S., 2013, Geological carbon storage through enhanced oil recovery. Energy Procedia, 37, 6808-6830. https://doi.org/10.1016/j.egypro.2013.06.614
  13. IEA, 2008a, Energy Technology Perspectives 2008: Scenarios & Strategies to 2050. OECD/IEA.
  14. IEA, 2008b, $CO_2$ Capture and Storage: A Key Carbon abatement option. OECD/IEA.
  15. IPCC, 2005, Carbon Dioxide Capture and Storage. In: Metz, B., Davidson, O., de Coninck, L., Loos, M. and Meyer, L. (eds.), Cambridge University Press, Cambridge, 442 p.
  16. Jang, E., Yun, S.-T., Choi, B.-Y., Chung, D. and Kang, H., 2012, Status and implications of regulatory frameworks for environmental management of geologic $CO_2$ storage in USA and EU. Journal of Soil and Groundwater Environment, 17, 9-22 (in Korean with English abstract).
  17. Jin, M.S., Kim, S.J. and Shin, S.C., 1988, K/Ar and fissiontrack datings for volcanic rocks in the Pohang-Kampo area. Report KD-87-27, Korea Institute of Energy and Resources, Daejeon, 51-88 (in Korean with English abstract).
  18. Jolivet, L., Huchon, P. and Brun, J.P., 1991, Arc deformation and marginal basin opening: Japan Sea as a case study. Journal of Geophysical Research, 96, 4367-4384. https://doi.org/10.1029/90JB02455
  19. Jolivet, L. and Tamaki, K., 1992, Neogene kinematics in the Japan Sea region and volcanic activity of the Northeast Japan Arc. Proceedings, the Ocean Drilling Program, Scientific Results, 127/128, 1311-1331.
  20. Jolivet, L., Tamaki, K. and Fournier, M., 1994, Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research, 99, 22237-22259. https://doi.org/10.1029/93JB03463
  21. Jung, S., Kim, M.C., Cho, H., Son, M. and Sohn, Y.K., 2012, Basin fills and geological structures of the Miocene Yangpo subbasin in the Janggi-myeon, Pohang, SE Korea. Journal of the geological Society of Korea, 48, 49-68 (in Korean with English abstract).
  22. Kim, J.S., Son, M., Kim, J.-S. and Kim, J., 2005, $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarm and volcanic rocks, SE Korea. Journal of the Petrological Society of Korea, 14, 93-107 (in Korean with English abstract).
  23. Kim, K.H., Won, J.K., Matsuda, J., Nagao, K. and Lee, M.W., 1986, Paleomagnetism and K-Ar age of volcanic rocks for Guryongpo area. Journal of the Korean Institute of Mining Geology, 19, 231-239.
  24. Kim, M.-C., Kim, J.-S., Jung, S., Son, M. and Sohn, Y.K., 2011, Classification and stratigraphy of the Miocene basin fills in the northern area of the Janggi-myeon, Pohang, SE Korea. Journal of the Geological Society of Korea, 47, 585-612 (in Korean with English abstract).
  25. Korbol, R. and Kaddour, A., 1995, Sleipner-vest $CO_2$ disposal-injection of removed $CO_2$ into the Utsira Formation. Energy Conversion and Management, 36, 509-512. https://doi.org/10.1016/0196-8904(95)00055-I
  26. Lallemand, S. and Jolivet, L., 1985/86, Japan Sea: a pull-apart basin? Earth and Planetary Science Letters, 76, 375-389.
  27. Lee, H.K., Moon, H.-S., Min, K.D., Kim, I.-S., Yun, H. and Itaya, T., 1992, Paleomagnetism, stratigraphy and geologic structure of the Tertiary Pohang and Changgi basins: K-Ar ages for the volcanic rocks. Journal of the Korean Institute of Mining Geology, 25, 337-349 (in Korean with English abstract).
  28. Lenhardt, N. and Gotz, A.E., 2011, Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlan Formation, Central Mexico. Journal of Volcanology and Geothermal Research, 204, 66-75. https://doi.org/10.1016/j.jvolgeores.2011.03.007
  29. Lenzen, M., 2011, Global warming effect of leakage from $CO_2$ storage. Critical Reviews in Environmental Science and Technology, 41, 2169-2185. https://doi.org/10.1080/10643389.2010.497442
  30. Lu, J., Kordi, M., Hovorka, S.D., Meckel, T.A. and Christopher, C.A., 2013, Reservoir characterization and complications for trapping mechanisms at Cranfield $CO_2$ injection site. International Journal of Greenhouse Gas Control, 18, 361-374. https://doi.org/10.1016/j.ijggc.2012.10.007
  31. Lucchitta, I. and Suneson, N.H., 1993, Dips and extension. Geological Society of America Bulletin, 105, 1346-1356. https://doi.org/10.1130/0016-7606(1993)105<1346:DAE>2.3.CO;2
  32. Luo, J., Morad, S., Liang, Z. and Zhu, Y., 2005, Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe basin, China. Advancing the World of Petroleum Geosciences Bulletin, 89, 1319-1346.
  33. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T., 2010, Geological storage of $CO_2$ in saline aquifers - a review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4, 659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  34. Moon, T., Son, M., Chang, T.-W. and Kim, I.-S., 2000, Paleostress reconstruction in the Tertiary basin areas in southeastern Korea. Journal of Korean Earth Science Society, 21, 230-249 (in Korean with English abstract).
  35. OECDiLibrary, 2014, http://www.oecd.org/statistics (August 23, 2014).
  36. Park Y.-C., Huh, D.-G. and Yoo, D.-G., 2009, A review of business model for $CO_2$ geological storage project in Korea. Journal of the Geological Society of Korea, 45, 579-587 (in Korean with English abstract).
  37. Rawland, S.M., Duebendorfer, E.M. and Schiefelbein, I.M., 2007, Structural analysis and synthesis: A laboratory course in structural geology, 3rd edition. Blackwell Publishing, Oxford, 301 p.
  38. Schlische, R.W., 1993, Anatomy and evolution of the Traiassic-Jurassic continental rift system, eastern North America. Tectonics, 12, 1026-1042. https://doi.org/10.1029/93TC01062
  39. Shin, S.-C., 2013, Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea. Journal of the Petrological Society of Korea, 22, 83-115 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2013.22.2.083
  40. Sohn, Y.K., Ki, J.S., Jung, S., Kim, M.-C., Cho, H. and Son, M., 2013, Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic-epiclastic succession in the Miocene Janggi Basin, SE Korea. Sedimentary Geology, 288, 40-59. https://doi.org/10.1016/j.sedgeo.2013.01.002
  41. Son, M., 1998, Formation and Evolution of the Tertiary Miocene Basins in Southeastern Korea: Structural and Paleomagnetic Approaches. Ph D, Pusan National University (in Korean with English abstract).
  42. Son, M., Chong, H.-Y. and Kim, I.-S., 2002, Geology and geological structures in the vicinities of the southern part of the Yonil Tectonic Line, SE Korea. Journal of the Geological Society of Korea, 38, 175-197 (in Korean with English abstract).
  43. Son, M. and Kim, I.-S., 1994, Geological structures and evolution of the Tertiary Chongja Basin, southeastern margin of the Korean Peninsula. Economic and Environmental Geology, 27, 65-80 (in Korean with English abstract).
  44. Son, M., Kim, I.-S. and Sohn, Y.K., 2005, Evolution of the Miocene Waup basin, SE Korea, in response to dextral shear along the southwestern margin of the East Sea (Sea of Japan). Journal of Asian Earth Sciences, 25, 529-544 (in Korean with English abstract). https://doi.org/10.1016/j.jseaes.2004.06.003
  45. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H. and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. The Korean Society of Petroleum Geology, 13, 1-16 (in Korean with English abstract).
  46. Son, M., Kim J.S., Jung, S., Ki, J.S., Kim, M.-C. and Sohn, Y.K., 2012, Tectonically controlled vent migration during maar-diatreme formation: An example from a Miocene half-graben basin in SE Korea. Journal of Volcanology and Geothermal Research, 223-224, 29-46. https://doi.org/10.1016/j.jvolgeores.2012.02.002
  47. Son, M., Seo, H.J. and Kim, I.-S., 2000, Geological structures and evolution of the Miocene Eoil basin, southeastern Korea. Geosciences Journal, 4, 73-88 (in Korean with English abstract). https://doi.org/10.1007/BF02910128
  48. Son, M., Song, W.S., Kim., M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene Crustal Deformation, Basin Development, and Tectonic Implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, 49, 93-118 (in Korean with English abstract).
  49. Song, C.W., Son, M., Sohn, Y.K., Han, R., Shinn, Y.J. and Kim, J.-C., 2015, A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. Journal of the Geological Society of Korea, 51, 53-66 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.53
  50. Sruoga, P. and Rubinstein, N., 2007, Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina. Advancing the World of Petroleum Geosciences Bulletin, 91, 115-129.
  51. Sruoga, P., Rubinstein, N. and Hinterwimmer, G., 2004, Porosity and permeability in volcanic rocks: a case study on the Serie Tobifera, south Patagonia, Argentina. Journal of Volcanology and Geothermal Research, 132, 31-43. https://doi.org/10.1016/S0377-0273(03)00419-0
  52. Stollhofen, H. and Stanistreet, I.G., 1994, Interaction between bimodal volcanism, fluvial sedimentation and basin development in the Permo-Carboniferous Saar-Nahe Basin (south-west Germany). Basin Research, 6, 245-267. https://doi.org/10.1111/j.1365-2117.1994.tb00088.x
  53. Tateiwa, I., 1924, 1:50,000 Geological atlas of Chosen, No. 2, Ennichi, Kuryuho and Choyo sheets. Geological Survey of Chosen (in Japanese).
  54. Viebahn, P., Nitsch, J., Fischedick, M., Esken, A., Schuuwer, D., Supersberger, N., Zuber-buuhler, U. and Edenhofer, O., 2007, Comparison of carbon capture and storage withrenewable energy technologies regarding structural, economic, and ecological aspects in Germany. International Journal of Greenhouse Gas Control, 1,121-133. https://doi.org/10.1016/S1750-5836(07)00024-2
  55. Wernicke, B. and Burchfiel, B.C., 1982, Modes of extensional tectonics. Journal of Structural Geology, 4, 105-115. https://doi.org/10.1016/0191-8141(82)90021-9
  56. Wise, D.U., 1992, Dip domain method applied to the Mesozoic Connecticut valley Rift Basins. Tectonics, 11, 1357-1368. https://doi.org/10.1029/92TC01103
  57. Yoon, S., 1992, Geology of the Tertiary Yangnam and Pohang basins, Korea. Bulletin of the Mizunami Fossils Museum, No. 19, 13-31.
  58. Yoon, S.W., Kim, M.-C., Song, C.W. and Son, M., 2014, Basin-fill lithostratigraphy of the Early Miocene Haseo Basin in SE Korea. Journal of the geological Society of Korea, 50, 193-214 (in Korean with English abstract).
  59. Yun, H., Min, K.D., Moon, H., Lee, H.K. and Yi, S.S., 1991, Biostratigraphic, chemostratigraphic, paleomagnetostratigraphic, and tephrochronological study for the correlation of Tertiary formations in southern part of Korea: Regional tectonics and its stratigraphical implication in the Pohang Basin, Korea. Journal of the Paleontological Society of Korea, 1, 1-12.
  60. Zou, C., Zhang, G., Zhu, R., Yuan, X., Zhao, X., Hou, L., Wen, B. and Wu, X., 2013, Volcanic reservoirs in petroleum exploration. Elsevier, Waltham, San Diego, 204 p.

Cited by

  1. Depositional environments and processes of the subsurface dacitic volcaniclastic deposits in the Miocene Janggi Basin, SE Korea vol.52, pp.6, 2015, https://doi.org/10.14770/jgsk.2016.52.6.775
  2. 장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가 vol.49, pp.6, 2015, https://doi.org/10.9719/eeg.2016.49.6.469
  3. Paleostress reconstruction using fault-slip data from drill core: Application to the interpretation of the Quaternary faulting events in SE Korea vol.53, pp.1, 2015, https://doi.org/10.14770/jgsk.2017.53.1.193
  4. Depositional history of the Janggi Conglomerate controlled by tectonic subsidence, during the early stage of Janggi Basin evolution vol.53, pp.2, 2015, https://doi.org/10.14770/jgsk.2017.53.2.221
  5. 초임계이산화탄소(scCO2) 주입압력 측정에 의한 장기분지 응회암과 이암의 scCO2 차폐능 평가 vol.50, pp.4, 2015, https://doi.org/10.9719/eeg.2017.50.4.303
  6. Variation in depositional environments controlled by tectonics and volcanic activities in the lower part of the Seongdongri Formation, Janggi Basin vol.54, pp.1, 2015, https://doi.org/10.14770/jgsk.2018.54.1.21
  7. 포항분지 해상 중소규모 CO2 저장 실증연구 vol.28, pp.2, 2015, https://doi.org/10.9720/kseg.2018.2.133
  8. 포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가 vol.28, pp.2, 2015, https://doi.org/10.9720/kseg.2018.2.217
  9. 한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안 vol.51, pp.4, 2018, https://doi.org/10.9719/eeg.2018.51.4.381
  10. Estimates of scCO2 Storage and Sealing Capacity of the Janggi Basin in Korea Based on Laboratory Scale Experiments vol.9, pp.9, 2015, https://doi.org/10.3390/min9090515
  11. Depositional history of the upper part of the Seongdongri Formation, Janggi Basin, controlled by tectonics and volcanic activity vol.56, pp.3, 2015, https://doi.org/10.14770/jgsk.2020.56.3.285
  12. Site selection and characterization for onshore 10,000-ton-class CO2 pilot storage in Early Miocene Janggi Basin, SE Korea: Storage potential and structural stability of siliciclastic-volca vol.103, pp.None, 2015, https://doi.org/10.1016/j.ijggc.2020.103174
  13. Kinematic characteristics and movement timing of the Wonwonsa fault in the central Ulsan fault vol.57, pp.1, 2015, https://doi.org/10.14770/jgsk.2021.57.1.35