DOI QR코드

DOI QR Code

Effect of chemical treatments on lithium recovery process of activated carbons

  • Jeong, Ji-Moon (Department of Chemistry, Inha University) ;
  • Rhee, Kyong Yop (Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2014.10.13
  • Accepted : 2015.01.11
  • Published : 2015.07.25

Abstract

In this work, surface characteristics of chemically treated activated carbons (ACs) were studied for lithium ion in aqueous solution. From the results, it was found that the chemical treatments introduced functional groups onto the ACs surfaces. The amount of lithium ion recovery was enhanced by basic treatments. Also, we characterized lithium ion adsorption-desorption efficiency. The lithium adsorption-desorption efficiency exhibited good stability after five adsorption-desorption cycles. Consequently, it could be concluded that lithium ion recovery behaviors are greatly influenced by the basic characteristics of AC surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy

References

  1. G. Zhu, P. Wang, P. Qi, C. Gao, Chem. Eng. J. 235 (2014) 340-348. https://doi.org/10.1016/j.cej.2013.09.068
  2. H.J. Hong, I.S. Park, T.G. Ryu, J.H. Ryu, B.G. Kim, K.S. Chung, Chem. Eng. J. 234 (2011) 16-22.
  3. S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, J. Power Sour. 112 (2012) 247-254.
  4. J. Speirs, M. Comtestabile, Y. Houari, R. Gross, Renew. Sust. Energy Rev. 35 (2014) 183-193. https://doi.org/10.1016/j.rser.2014.04.018
  5. J. Lemaire, L. Svecova, F. Lagallarde, R. Laucournet, P. Thivel, Hydrometallurgy 143 (2014) 1-11. https://doi.org/10.1016/j.hydromet.2013.11.006
  6. K. Ishimori, H. Imura, K. Ohashi, Anal. Chim. Acta 454 (2002) 241-247. https://doi.org/10.1016/S0003-2670(01)01550-1
  7. T. Hoshino, Desalination 317 (2013) 11-16. https://doi.org/10.1016/j.desal.2013.02.014
  8. A. Chagnes, B. Pospiech, J. Chem. Technol. Biotechnol. 88 (2013) 1191-1199. https://doi.org/10.1002/jctb.4053
  9. Z. Zhou, W. Qin, S. Liang, Y. Tan, W. Fei, Ind. Eng. Chem. Res. 51 (2012) 12926-12932. https://doi.org/10.1021/ie3015236
  10. S. Nishihama, K. Onishi, K. Yoshizuka, Solvent Extr. Ion Exch. 29 (2011) 421-431. https://doi.org/10.1080/07366299.2011.573435
  11. J.A. Epstein, E.M. Feist, J. Zmora, Y. Marcus, Hydrometallurgy 6 (1981) 269-275. https://doi.org/10.1016/0304-386X(81)90044-X
  12. Q. Yu, K. Sasaki, T. Hirajima, J. Hazard. Mater. 262 (2013) 38-47. https://doi.org/10.1016/j.jhazmat.2013.08.027
  13. B.J. Kim, Y.S. Lee, S.J. Park, Int. J. Hydrogen Energy 33 (2008) 4112-4115. https://doi.org/10.1016/j.ijhydene.2008.05.077
  14. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (2001) 2054-2058. https://doi.org/10.1021/ie000911h
  15. M.J. Jung, J.W. Kim, J.S. Im, S.J. Park, Y.S. Lee, J. Ind. Eng. Chem. 15 (2009) 410-414. https://doi.org/10.1016/j.jiec.2008.11.001
  16. S.J. Park, Y.S. Jang, J.W. Shin, S.K. Ryu, J. Colloid Interface Sci. 260 (2003) 259-264. https://doi.org/10.1016/S0021-9797(02)00081-4
  17. M.D. Bhatt, C. O'Dwyer, Curr. Appl. Phys. 14 (2014) 349-354. https://doi.org/10.1016/j.cap.2013.12.010
  18. Y.S. Han, H.J. Kim, J.K. Park, Chem. Eng. J. 210 (2012) 482-489. https://doi.org/10.1016/j.cej.2012.09.019
  19. J.S. Shim, S.J. Park, S.K. Ryu, Carbon 39 (2001) 1635-1642. https://doi.org/10.1016/S0008-6223(00)00290-6
  20. M. Molina-Sabio, C. Almansa, F. Rodriquez-Reinoso, Carbon 41 (2003) 2113-2119. https://doi.org/10.1016/S0008-6223(03)00237-9
  21. S.J. Park, J.S. Kim, J. Colloid Interface Sci. 232 (2000) 311-316. https://doi.org/10.1006/jcis.2000.7160
  22. S.J. Park, S.Y. Jin, J. Colloid Interface Sci. 286 (2005) 417-419. https://doi.org/10.1016/j.jcis.2005.01.043
  23. M. Danish, R. Hashim, M.N. Mohamad Ibrahim, O. Sulaiman, J. Anal. Appl. Pyrol. 104 (2013) 418-425. https://doi.org/10.1016/j.jaap.2013.06.003
  24. S.J. Park, B.J. Park, S.K. Ryu, Carbon 37 (1999) 1223-1226. https://doi.org/10.1016/S0008-6223(98)00318-2
  25. H.M. Yoo, S.Y. Lee, B.J. Kim, S.J. Park, Carbon Lett. 12 (2011) 112-115. https://doi.org/10.5714/CL.2011.12.2.112
  26. S. Rather, R. Zacharia, M. Naik, S.W. Hwang, A.R. Kim, K.S. Nahm, Int. J. Hydrogen Energy 33 (2008) 6710. https://doi.org/10.1016/j.ijhydene.2008.08.040
  27. S.J. Park, Y.S. Jang, J. Colloid Interface Sci. 249 (2002) 458-463. https://doi.org/10.1006/jcis.2002.8269
  28. D.S. Won, I.S. Park, M.H. Park, Y.S. Sohn, B.G. Kim, K.S. Nahm, K.S. Chung, P. Kim, Curr. Appl. Phys. 14 (2014) 1245-1250. https://doi.org/10.1016/j.cap.2014.06.023
  29. R.L. Xu, C.F. Wu, H.Y. Xu, Carbon 45 (2007) 2806-2809. https://doi.org/10.1016/j.carbon.2007.09.010
  30. J. Mukherjee, J. ramkumar, S. Chandramoluleeswaran, R. Shukla, A.K. Tyagi, J. Radioanal. Nucl. Chem. 297 (2013) 49-57. https://doi.org/10.1007/s10967-012-2393-7
  31. H.P. Boehm, Carbon 1 (1964) 394.
  32. H.L. Chiang, C.P. Huang, P.C. Chiang, Chemosphere 47 (2002) 257. https://doi.org/10.1016/S0045-6535(01)00215-6
  33. Q.H. Zhang, S. Sun, S. Li, H. Jiang, J.G. Yu, Chem. Eng. Sci. 62 (2007) 18-20.
  34. P. Mahajan, A. Youssef, P.L. Walker Jr., Sep. Sci. Technol. 13 (1978) 487. https://doi.org/10.1080/01496397808058298
  35. S.Y. Lee, S.J. Park, RSC Adv. 4 (2014) 21899-21903. https://doi.org/10.1039/c4ra01490a

Cited by

  1. Production of activated carbons from biodegradable waste materials as an alternative way of their utilisation vol.22, pp.4, 2015, https://doi.org/10.1007/s10450-015-9719-z
  2. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2015, https://doi.org/10.5714/cl.2016.17.1.018
  3. A review: role of interfacial adhesion between carbon blacks and elastomeric materials vol.18, pp.None, 2015, https://doi.org/10.5714/cl.2016.18.001
  4. SURFACE MODIFICATIONS OF ACTIVATED CARBON AND ITS IMPACT ON APPLICATION vol.26, pp.1, 2015, https://doi.org/10.1142/s0218625x1830006x
  5. An overview and outlook on gas adsorption: for the enrichment of low concentration coalbed methane vol.55, pp.6, 2015, https://doi.org/10.1080/01496395.2019.1585454
  6. Materials for lithium recovery from salt lake brine vol.56, pp.1, 2015, https://doi.org/10.1007/s10853-020-05019-1