DOI QR코드

DOI QR Code

Preparation and characterization of graphite foams

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2015.08.05
  • Accepted : 2015.09.08
  • Published : 2015.12.25

Abstract

Graphite foams can be prepared by various methods, such as a blowing, the use of polymer based templates, and the compression of graphite and/or graphite sheets. Adding fillers to graphite foams can lead to improved thermal conductivity and compressive strength. The mechanical properties of graphite foam with carbon material added are negatively affected by the low dispersibility, alignment and interfacial adhesion of the fillers in the foam. This study reviews studies that have investigated various fabrication methods, the addition of carbon materials, and surface treatments of graphite foams to improve their thermal and mechanical properties.

Keywords

Acknowledgement

Supported by : Administration and Agency for Defense Development

References

  1. B. Nagel, S. Pusz, B. Trzebicka, J. Mater. Sci. 49 (2014) 1. https://doi.org/10.1007/s10853-013-7678-x
  2. M. Inagaki, J. Qiu, Q. Guo, Carbon 87 (2015) 128. https://doi.org/10.1016/j.carbon.2015.02.021
  3. J. Sanchez-Coronado, D.D.L. Chung, Carbon 41 (2003) 1175. https://doi.org/10.1016/S0008-6223(03)00025-3
  4. J. Klett, R. Hardy, E. Romine, C. Walls, Carbon 38 (2000) 953. https://doi.org/10.1016/S0008-6223(99)00190-6
  5. M. Calvo, R. Garcia, A. Arenillas, I. Suarez, S.R. Moinelo, Fuel 84 (2005) 2184. https://doi.org/10.1016/j.fuel.2005.06.008
  6. A.G. Straatman, N.C. Gallego, B.E. Thompson, H. Hangan, Int. J. Heat Mass Transfer 49 (2006) 1991. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.028
  7. M. Wissler, J. Power Sources 156 (2006) 142. https://doi.org/10.1016/j.jpowsour.2006.02.064
  8. K. Lim, H. Roh, J. Mech. Sci. Technol. 19 (10) (2005) 1932. https://doi.org/10.1007/BF02984272
  9. J. Ji, H. Ji, L.L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, Adv. Mater. 25 (2013) 4673. https://doi.org/10.1002/adma.201301530
  10. J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7 (7) (2013) 6237. https://doi.org/10.1021/nn4021955
  11. S. Kumar, M. Srivastava, Carbon Lett. 16 (3) (2015) 171. https://doi.org/10.5714/CL.2015.16.3.171
  12. J.Y. Jung, M.S. Park, M.I. Kim, Y.S. Lee, Carbon Lett. 15 (4) (2014) 262. https://doi.org/10.5714/CL.2014.15.4.262
  13. H. Ji, L. Zhang, M.T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, R.S. Ruoff, Nano Lett. 12 (2012) 2446. https://doi.org/10.1021/nl300528p
  14. H. Liu, Q. Lin, Y. Li, B. Luo, C. Fang, J. Anal. Appl. Pyrol. 110 (2014) 476. https://doi.org/10.1016/j.jaap.2014.10.019
  15. J.J. Kyung, J.J. Kim, S.R. Kim, W.T. Kwon, K.Y. Cho, Y.H. Kim, J. Korean Ceram. Soc. 44 (11) (2007) 622. https://doi.org/10.4191/KCERS.2007.44.1.622
  16. A. Czerwinski, Z. Rogulski, S. Obrebowski, J. Lach, K. Wrobel, J. Wrobel, Int. J. Electrochem. Sci. 9 (2014) 4826.
  17. R. Kumar, S. Kumari, S.R. Dhakate, Appl. Nanosci. 5 (2015) 553. https://doi.org/10.1007/s13204-014-0349-7
  18. M. Singh, C. Smith, A. Gyekenyesi, Int J. Appl. Ceram. Technol. 10 (5) (2013) 790. https://doi.org/10.1111/ijac.12123
  19. D.D.L. Chung, J. Mater. Sci. 37 (2002) 1475. https://doi.org/10.1023/A:1014915307738
  20. S.M. Lee, D.S. Kang, J.S. Roh, Carbon Lett. 16 (3) (2015) 135. https://doi.org/10.5714/CL.2015.16.3.135
  21. H.K. Shin, M. Park, H.Y. Kim, S.J. Park, Carbon Lett. 16 (3) (2015) 219. https://doi.org/10.5714/CL.2015.16.3.219
  22. M. Wang, C. Wang, M. Chen, T. Li, Z. Hu, New Carbon Mater. 24 (2009) 61. https://doi.org/10.1016/S1872-5805(08)60037-2
  23. S. Li, Q. Guo, W. Song, Z. Liu, J. Shi, L. Liu, X. Yan, Carbon 45 (2007) 2843. https://doi.org/10.1016/j.carbon.2007.09.035
  24. S. Li, Y. Song, Y. Song, J. Shi, L. Liu, X. Wei, Q. Guo, Carbon 45 (2007) 2092. https://doi.org/10.1016/j.carbon.2007.05.014
  25. B. Tsyntsarski, B. Petrova, T. Budinova, N. Petrov, M. Krzesinska, S. Pusz, J. Majewska, P. Tzvetkov, Carbon 48 (2010) 3523. https://doi.org/10.1016/j.carbon.2010.05.048
  26. M. Liu, L. Gan, F. Zhao, X. Fan, H. Xu, F. Wu, Z. Xu, Z. Hao, L. Chen, Carbon 45 (2007) 3055. https://doi.org/10.1016/j.carbon.2007.10.003
  27. S. Zhang, M. Liu, L. Gan, F. Wu, Z. Xu, Z. Hao, L. Chen, New Carbon Mater. 25 (2010) 9. https://doi.org/10.1016/S1872-5805(09)60012-3
  28. J.W. Klett, T.D. Burchell A. Choudhury, US 6,673,328 B1.
  29. V. Canseco, Y. Anguy, J.J. Roa, E. Palomo, Carbon 74 (2014) 266. https://doi.org/10.1016/j.carbon.2014.03.031
  30. A. Yadav, R. Kumar, G. Bhatia, G.L. Verma, Carbon 49 (2011) 3622. https://doi.org/10.1016/j.carbon.2011.04.065
  31. M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita, Carbon 27 (1989) 253. https://doi.org/10.1016/0008-6223(89)90131-0
  32. M. Inagaki, T. Takeichi, Y. Hishiyama, A. Oberlin, Chem. Phys. Carbon 26 (1999) 245.
  33. M. Inagaki, T. Morishita, A. Kuno, T. Kito, M. Hirano, T. Suwa, K. Kusakawa, Carbon 42 (2004) 497. https://doi.org/10.1016/j.carbon.2003.12.080
  34. S.R. Mukai, H. Nishihara, T. Yoshida, K. Taniguchi, H. Tamon, Carbon 43 (2005) 1557. https://doi.org/10.1016/j.carbon.2004.12.025
  35. J.H. Kim, Y.S. Lee, J. Ind. Eng. Chem. 30 (2015) 127. https://doi.org/10.1016/j.jiec.2015.05.013
  36. P.K. Pandey, P. Smitha, N.S. Gajbhiye, J. Polym. Res. 15 (2008) 397. https://doi.org/10.1007/s10965-008-9184-4
  37. R. Prieto, E. Louis, J.M. Molina, Carbon 50 (2012) 1904. https://doi.org/10.1016/j.carbon.2011.12.041
  38. Y. Mun, C. Jo, T. Hyeon, J. Lee, K.S. Ha, K.W. Jun, S.H. Lee, S.W. Hong, H.I. Lee, S. Yoon, J. Lee, Carbon 64 (2013) 391. https://doi.org/10.1016/j.carbon.2013.07.092
  39. J.H. Han, K.W. Cho, K.H. Lee, H. Kim, Carbon 36 (12) (1998) 1801. https://doi.org/10.1016/S0008-6223(98)00150-X
  40. Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 4 (7) (2010) 4324. https://doi.org/10.1021/nn101187z
  41. M. Kobayashi, H. Toda, A. Takeuchi, K. Uesugi, Y. Suzuki, Mater. Charact. 69 (2012) 52. https://doi.org/10.1016/j.matchar.2012.04.008
  42. Y. He, Y. Liu, T. Wu, J. Ma, X. Wang, Q. Gong, W. Kong, F. Xing, Y. Liu, J. Gao, J. Hazard. Mater. 260 (2013) 796. https://doi.org/10.1016/j.jhazmat.2013.06.042
  43. M.T. Johnson, A.S. Childers, J. Ramirez-Rico, H. Wang, K.T. Faber, Compos., A: Appl. Sci. 53 (2013) 182. https://doi.org/10.1016/j.compositesa.2013.06.009
  44. A. Perkson, J. Leis, M. Arulepp, M. Kaarik, S. Urbonaite, Carbon 41 (2003) 1729. https://doi.org/10.1016/S0008-6223(03)00118-0
  45. J. Leis, A. Perkson, M. Arulepp, P. Nigu, G. Svensson, Carbon 40 (2002) 1559. https://doi.org/10.1016/S0008-6223(02)00019-2
  46. M. kaarik, M. Arulepp, M. Karelson, J. Leis, Carbon 46 (2008) 1579. https://doi.org/10.1016/j.carbon.2008.07.003
  47. F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, Y. Yamada, Langmuir 16 (2000) 4367. https://doi.org/10.1021/la991080r
  48. X. He, Z. Tang, Y. Zhu, J. Yang, Mater. Lett. 94 (2013) 55. https://doi.org/10.1016/j.matlet.2012.12.023
  49. S. Lijima, Nature 374 (1991) 56.
  50. P. Kim, L. Shi, A. Majumadar, P.L. McEuen, Phy. Rev. Lett. 87 (2001) 1. https://doi.org/10.1103/PhysRevLett.87.1
  51. L. Ekstrand, Z. Mo, Y. Zhang, J. Liu, Fifth International Conference on Polymers and Adhesives in Microelectronics and Photonics-Proceedings, 2005, p. 185.
  52. V.S. Romanov, S.V. Lomov, I. Verpoest, L. Gorbatikh, Carbon 82 (2015) 184. https://doi.org/10.1016/j.carbon.2014.10.061
  53. Y.Y. Huang, E.M. Terentjev, Polymers 4 (2012) 275. https://doi.org/10.3390/polym4010275
  54. A. Nasiri, M. Shariaty-Niasar, A.M. Radhidi, R. Khodafarin, Int. J. Heat Mass Transfer 55 (2012) 1529. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.004
  55. S. Suarez, F. Lasserre, F. Soldera, R. Pippan, Mater. Sci. Eng., A: Struct. 626 (2015) 122. https://doi.org/10.1016/j.msea.2014.12.065
  56. H.F. Cui, L. Du, P.B. Guo, B. Zhu, J.H.T. Luong, J. Power Sources 283 (2015) 46. https://doi.org/10.1016/j.jpowsour.2015.02.088
  57. H. Hu, Z. Zhao, Y. Gogotsi, J. Qiu, Environ. Sci. Technol. Lett. 1 (2014) 214. https://doi.org/10.1021/ez500021w
  58. C.M. Leroy, F. Carn, R. Backov, M. Trinquecoste, P. Delhaes, Carbon 45 (2007) 2307. https://doi.org/10.1016/j.carbon.2007.06.023
  59. N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, B. Nalini, Appl. Phys. Lett. 88 (2006) 3 (093123).
  60. M.A. Rabah, S.M. El-Dighidy, J. Inst. Energy 63 (455) (1990) 79.
  61. J. Norley, J.W. Tzeng, G. Getz, J. Klug, B. Fedor, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2001, p. 107.
  62. J.W. Tzeng, G. Getz, B.S. Fedeor, D.W. Krassowski, Graftech. (2000).
  63. J. Norley, G.G. Chen, Proc. PCIM, 2002.
  64. C. Hou, Q. Zhang, Y. Li, H. Wang, Carbon 50 (2012) 1959. https://doi.org/10.1016/j.carbon.2011.12.049
  65. L. Gao, G. Zheng, Y. Zhou, L. Hu, G. Feng, M. Zhang, Polym. Degrad. Stabil. 101 (2014) 92. https://doi.org/10.1016/j.polymdegradstab.2013.12.025
  66. W.W. Focke, H. Badenhorst, S. Ramjee, H.J. Kruger, R.V. Schalkwyk, B. Rand, Carbon 73 (2014) 41. https://doi.org/10.1016/j.carbon.2014.02.035
  67. J. Zhu, X. Wang, L. Guo, Y. Wang, Y. Wang, M. Yu, K. Lau, Carbon 45 (2007) 2547. https://doi.org/10.1016/j.carbon.2007.08.019
  68. Y.H. Zhao, Z.K. Wu, S.L. Bai, Compos., A: Appl. Sci. 72 (2015) 200. https://doi.org/10.1016/j.compositesa.2015.02.011
  69. M. Wang, C.Y. Wang, T.Q. Li, Z.J. Hu, Compos. Sci. Technol. 68 (2008) 2220. https://doi.org/10.1016/j.compscitech.2008.04.007
  70. W.Q. Li, H.B. Zhang, X. Xiong, J. Mater. Sci. 46 (2011) 1143. https://doi.org/10.1007/s10853-010-5099-7
  71. R. Narasimman, K. Prabhakaran, Carbon 55 (2013) 305. https://doi.org/10.1016/j.carbon.2012.12.068
  72. H. Liu, T. Li, X. Wang, W. Zhang, T. Zhao, J. Anal. Appl. Pyrol. 110 (2014) 442. https://doi.org/10.1016/j.jaap.2014.10.015
  73. E. Rodriguez, I. Camean, R. Garcia, A.B. Garcia, Electrochim. Acta 56 (2011) 5090. https://doi.org/10.1016/j.electacta.2011.03.078
  74. T. Hamada, K. Suzuki, T. Kohno, T. Sugiura, Carbon 40 (2002) 1203. https://doi.org/10.1016/S0008-6223(01)00271-8
  75. C.T. Hach, L.E. Jones, C. Crossland, P.A. Thrower, Carbon 37 (1999) 221. https://doi.org/10.1016/S0008-6223(98)00166-3
  76. Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed. 51 (2012) 12124. https://doi.org/10.1002/anie.201207277
  77. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. Int. Ed. 51 (2012) 11371. https://doi.org/10.1002/anie.201206554
  78. Y. Ma, H. Wang, H. Feng, S. Ji, X. Mao, R. Wang, Electrochim. Acta 142 (2014) 317. https://doi.org/10.1016/j.electacta.2014.07.130
  79. S. Li, Q. Guo, Y. Song, J. Shi, L. Liu, Carbon 48 (2010) 1312. https://doi.org/10.1016/j.carbon.2009.01.036
  80. G. Isani, M.L. Falcioni, G. Barucca, D. Sekar, G. Andreani, E. Carpene, G. Falcioni, Ecotox. Environ. Saf. 97 (2013) 40. https://doi.org/10.1016/j.ecoenv.2013.07.001
  81. M. Singh, R. Asthana, C.E. Smith, A.L. Gyekenyesi, Curr. Appl. Phys. 12 (2012) S116. https://doi.org/10.1016/j.cap.2012.02.033
  82. L. Zhai, X. Liu, T. Li, Z. Feng, Z. Fan, Vacuum 114 (2015) 21. https://doi.org/10.1016/j.vacuum.2014.12.005
  83. A. Mishra, J. Dwivedi, K. Shukla, P. Malviya, J. Phys. Conf. Ser. 534 (2014) 012014. https://doi.org/10.1088/1742-6596/534/1/012014
  84. M.S. Han, B.G. Lee, B.S. Ahn, D.J. Moon, S.I. Hong, Appl. Surf. Sci. 211 (2003) 76. https://doi.org/10.1016/S0169-4332(03)00177-6
  85. C. Schrank, B. Schwarz, C. Eisenmenger-Sittner, K. Mayerhofer, E. Neubauer, Vacuum 80 (2005) 122. https://doi.org/10.1016/j.vacuum.2005.07.031
  86. C. Bittencourt, X. Ke, G.V. Tendeloo, S. Thiess, W. Drube, J. Ghijsen, C.P. Ewels, Chem. Phys. Lett. 535 (2012) 80. https://doi.org/10.1016/j.cplett.2012.03.045
  87. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Nano Lett. 7 (2) (2007) 281. https://doi.org/10.1021/nl062263i
  88. K. Lafdi, M. Almajali, O. Huzayyin, Carbon 47 (2009) 2620. https://doi.org/10.1016/j.carbon.2009.05.014
  89. M. Almajali, K. Lafdi, P.H. Prodhomme, O. Ochoa, Carbon 48 (2010) 1604. https://doi.org/10.1016/j.carbon.2009.12.060
  90. P. Warrier, A. Teja, Nanoscale Res. Lett. 6 (2011) 247. https://doi.org/10.1186/1556-276X-6-247
  91. B. Fathollahi, P.C. Chau, J.L. White, Carbon 43 (2005) 135. https://doi.org/10.1016/j.carbon.2004.08.031
  92. F. Fanjul, M. Ganda, R. Santamaria, R. Menendez, Fuel 81 (2002) 2061. https://doi.org/10.1016/S0016-2361(02)00189-8
  93. J.G. Lavin, Carbon 30 (1992) 351. https://doi.org/10.1016/0008-6223(92)90030-Z
  94. J. Drbohlav, W.T.K. Stevenson, Carbon 33 (1995) 693. https://doi.org/10.1016/0008-6223(95)00011-2
  95. T. Matsumoto, I. Mochida, Carbon 31 (1993) 143. https://doi.org/10.1016/0008-6223(93)90167-9
  96. A. Centeno, R. Santamaria, M. Granda, R. Menendez, C. Blanco, J. Anal. Appl. Pyrolysis 86 (2009) 28. https://doi.org/10.1016/j.jaap.2009.03.002
  97. L. Zhichang, L. Licheng, Q. Wnming, L. Lang, I. Mochida, J. Mater. Sci. 34 (1999) 6003. https://doi.org/10.1023/A:1004788930114
  98. K.C. Leong, H.Y. Li, Int. Heat J. Mass Transfer 54 (2011) 5491. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.042
  99. N. Bekoz, E. Oktay, Mater. Sci. Eng. A: Strut. 576 (2013) 82. https://doi.org/10.1016/j.msea.2013.04.009
  100. Y.I. Jang, N.J. Dudney, T.N. Tiegs, J.W. Klett, J. Power Sources 161 (2006) 1392. https://doi.org/10.1016/j.jpowsour.2006.04.124
  101. M. Marton, M. Vojs, M. Kotlar, P. Michniak, L. Vanco, Appl. Surf. Sci. 312 (2014) 139. https://doi.org/10.1016/j.apsusc.2014.05.199
  102. W. Zhao, D.M. France, W. Yu, T. Kim, D. Singh, Renew. Energy 69 (2014) 134. https://doi.org/10.1016/j.renene.2014.03.031
  103. T. Kim, D. Singh, M. Singh, Energy Procedia 69 (2015) 900. https://doi.org/10.1016/j.egypro.2015.03.170
  104. D. Singh, W. Zhao, W. Yu, D.M. France, T. Kim, Sol. Energy 118 (2015) 232. https://doi.org/10.1016/j.solener.2015.05.016
  105. R. Chen, R. Yao, W. Xia, R. Zou, Appl. Energy 152 (2015) 183. https://doi.org/10.1016/j.apenergy.2015.01.022
  106. K. Lafdi, O. Mesalhy, A. Elgafy, Carbon 46 (2008) 159. https://doi.org/10.1016/j.carbon.2007.11.003
  107. W. Lin, B. Sunden, J. Yuan, Appl. Therm. Eng. 50 (2013) 1201. https://doi.org/10.1016/j.applthermaleng.2012.08.047
  108. M. Karthik, A. Faik, S. Doppiu, V. Roddatis, B.D. Aquanno, Carbon 87 (2015) 434. https://doi.org/10.1016/j.carbon.2015.02.060

Cited by

  1. PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성 vol.26, pp.6, 2015, https://doi.org/10.14478/ace.2015.1102
  2. 불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성 vol.54, pp.6, 2015, https://doi.org/10.9713/kcer.2016.54.6.830
  3. Fabrication, characterization and electrochemical response of pitch-derived open-pore carbon foams as electrodes vol.48, pp.3, 2018, https://doi.org/10.1007/s10800-018-1161-y
  4. Improved mechanical, thermal and flame resistant properties of flexible isocyanate-based polyimide foams by graphite incorporation vol.30, pp.9, 2015, https://doi.org/10.1177/0954008317740195
  5. Multifunctional polylactic acid composites filled with activated carbon particles obtained from acrylic fibrous wastes vol.40, pp.2, 2019, https://doi.org/10.1002/pc.24695
  6. 복합 단열 매트 보강 폴리우레탄 폼의 열적 성능 및 내충격성 평가 vol.32, pp.5, 2019, https://doi.org/10.7234/composres.2019.32.5.290
  7. A long-cycle and high-rate Si/SiOx/nitrogen-doped carbon composite as an anode material for lithium-ion batteries vol.43, pp.46, 2015, https://doi.org/10.1039/c9nj04238e
  8. Effect of the pitch particle size on the thermal property of carbon foams vol.631, pp.1, 2021, https://doi.org/10.1088/1755-1315/631/1/012072
  9. Analytical model of solar energy storage using non-Newtonian Fluid in a saturated porous media in fully developed region: carboxymethyl cellulose (CMC) and graphite model vol.9, pp.2, 2015, https://doi.org/10.3934/energy.2021012
  10. Solar energy storage in evacuated tubes solar collector using nanofluid embedded in a saturated porous media in the fully developed region: Al2O3 nanofluid embedded in graphite a vol.9, pp.4, 2015, https://doi.org/10.3934/energy.2021040
  11. Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method vol.14, pp.21, 2015, https://doi.org/10.3390/ma14216433