DOI QR코드

DOI QR Code

Effect of surfactant, HCl and NH3 treatments on the regeneration of waste activated carbon used in selective catalytic reduction unit

  • Ko, Jeong Huy (School of Environmental Engineering, University of Seoul) ;
  • Park, Rae-su (Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Do Heui (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University) ;
  • Kim, Sang Chai (Department of Environmental Education, Mokpo National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • Received : 2015.05.10
  • Accepted : 2015.08.03
  • Published : 2015.12.25

Abstract

Deactivated waste activated carbon due to the deposition of boron in the exhaust gas from an incinerator was regenerated by the treatment with surfactant, HCl, and $NH_3$. The catalysts were characterized using BET surface area, ICP, XPS and FT-IR spectra. Sequential treatment with surfactant and HCl removed the adsorbed boron very effectively. $NH_3$ treatment increased the number of functional nitrogen groups in regenerated sample. For $NH_3$ selective catalytic reduction (SCR) of NO, sequential treatments with surfactant, HCl, and $NH_3$ showed the highest DeNOx activity, attributed to the increased metal removal efficiency, specific surface area and amount of nitrogen functional groups on the surface.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. F. Ahmed, H.J. Cho, J.K. Kim, N.U. Seong, Y.K. Yeo, Korean J. Chem. Eng. 32 (2015) 1029. https://doi.org/10.1007/s11814-014-0301-2
  2. A. Rangrazi, H. Niazmand, H.M. Heravi, Korean J. Chem. Eng. 30 (2013) 1588. https://doi.org/10.1007/s11814-013-0088-6
  3. H. Dong, Y. Zhang, Z. Gu, Korean J. Chem. Eng. 31 (2014) 1002. https://doi.org/10.1007/s11814-014-0035-1
  4. T. Paramadayalan, A. Pant, Korean J. Chem. Eng. 30 (2013) 2170. https://doi.org/10.1007/s11814-013-0155-z
  5. T. Valdes-Solis, G. Marban, A.B. Fuertes, Appl. Catal. B: Environ. 46 (2003) 261. https://doi.org/10.1016/S0926-3373(03)00217-0
  6. X. Tang, J. Hao, H. Yi, J. Li, Catal. Today 126 (2007) 406. https://doi.org/10.1016/j.cattod.2007.06.013
  7. T. Feng, L. Lu, J. Ind. Eng. Chem. 28 (2015) 97. https://doi.org/10.1016/j.jiec.2015.02.004
  8. J.W. Kim, W.G. Lee, I.S. Hwang, J.Y. Lee, C. Han, J. Ind. Eng. Chem. 28 (2015) 73. https://doi.org/10.1016/j.jiec.2015.02.001
  9. C.K. Seo, B. Choi, J. Ind. Eng. Chem. 25 (2015) 239. https://doi.org/10.1016/j.jiec.2014.10.040
  10. Y. Jiang, Z. Xing, X. Wang, S. Huang, Q. Liu, J. Yang, J. Ind. Eng. Chem. 29 (2015) 43. https://doi.org/10.1016/j.jiec.2015.04.023
  11. Q. Zhang, C. Song, G. Lv, F. Bin, H. Pang, J. Song, J. Ind. Eng. Chem. 24 (2015) 79. https://doi.org/10.1016/j.jiec.2014.09.012
  12. B. Yang, D.H. Zheng, Y.S. Shen, Y.S. Qiu, B. Li, Y.W. Zeng, S.B. Shen, S.M. Zhu, J. Ind. Eng. Chem. 24 (2015) 148. https://doi.org/10.1016/j.jiec.2014.09.022
  13. R. Guo, W. Zhen, W. Pan, Y. Zhou, J. Hong, H. Xu, Q. Jin, C. Ding, S. Guo, J. Ind. Eng. Chem. 20 (2014) 1577. https://doi.org/10.1016/j.jiec.2013.07.051
  14. A.M. Abu-Jrai, J.A. Yamin, K.A. Ibrahim, O.A. Al-Khashman, M.A. Al-Shaweesh, M.A. Hararah, U. Rashid, M. Ahmad, G.M. Walker, A.H. Al-Muhtaseb, J. Ind. Eng. Chem. 20 (2014) 1650. https://doi.org/10.1016/j.jiec.2013.08.012
  15. W. Pan, J. Hong, R. Guo, W. Zhen, H. Ding, Q. Jin, C. Ding, S. Guo, J. Ind. Eng. Chem. 20 (2014) 2224. https://doi.org/10.1016/j.jiec.2013.09.054
  16. P. Nakhostin Panahi, D. Salari, A. Niaei, S.M. Mousavi, J. Ind. Eng. Chem. 19 (2013) 1793. https://doi.org/10.1016/j.jiec.2013.02.022
  17. R. Guo, Y. Zhou, W. Pan, J. Hong, W.Q. Zhen, C. Ding, S. Guo, J. Ind. Eng. Chem. 19 (2013) 2022. https://doi.org/10.1016/j.jiec.2013.03.010
  18. X. Zhang, B. Shen, K. Wang, J. Chen, J. Ind. Eng. Chem. 19 (2013) 1272. https://doi.org/10.1016/j.jiec.2012.12.028
  19. H.L. Koh, H.K. Park, J. Ind. Eng. Chem. 19 (2013) 73. https://doi.org/10.1016/j.jiec.2012.07.003
  20. Y. Jia, D. Du, X. Zhang, X. Ding, O. Zhong, Korean J. Chem. Eng. 30 (2013) 1735. https://doi.org/10.1007/s11814-013-0091-y
  21. M. Kobayashi, K. Miyoshi, Appl. Catal. B: Environ. 72 (2006) 253.
  22. Y. Zheng, A.D. Jensen, J.E. Johnsson, J.R. Thogersen, Appl. Catal. B: Environ. 83 (2008) 186. https://doi.org/10.1016/j.apcatb.2008.02.019
  23. R. Khodayari, C.U.I. Odenbrand, Appl. Catal. B: Environ. 30 (2001) 87. https://doi.org/10.1016/S0926-3373(00)00227-7
  24. R. Khodayari, C.U.I. Odenbrand, Appl. Catal. B: Environ. 33 (2001) 277. https://doi.org/10.1016/S0926-3373(01)00193-X
  25. Y. Guo, Z. Liu, Y. Li, Q. Liu, Fuel 35 (2007) 344.
  26. Q. Guo, W. Jing, Y. Hou, Z. Huang, G. Ma, X. Han, D. Sun, Chem. Eng. J. 270 (2015) 41. https://doi.org/10.1016/j.cej.2015.01.086
  27. W. Jing, Q. Guo, Y. Hou, G. Ma, X. Han, Z. Huang, Catal. Commun. 56 (2014) 23. https://doi.org/10.1016/j.catcom.2014.06.017
  28. S. Singh, M.A. Nahil, X. Sun, C. Wu, J. Chen, B. Shen, P.T. Williams, Fuel 105 (2013) 585. https://doi.org/10.1016/j.fuel.2012.09.010
  29. B. Shen, J. Chen, S. Yue, G. Li, Fuel 156 (2015) 47. https://doi.org/10.1016/j.fuel.2015.04.027
  30. G.E. Marnellos, E.A. Efthimiadis, I.A. Vasalos, Appl. Catal. B: Environ. 48 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.09.011
  31. M. Alfaro-Dominguez, F.J. Higes-Rolando, M.L. Rojas-Cervantes, V. Gomez-Serrano, Appl. Surf. Sci. 252 (2006) 6005. https://doi.org/10.1016/j.apsusc.2005.11.002
  32. K. Nuithitikul, S. Srikhun, S. Hirunpraditkoon, Bioresour. Technol. 101 (2010) 426. https://doi.org/10.1016/j.biortech.2009.07.040
  33. J.K. Jeon, H. Kim, Y.K. Park, C.H.F. Peden, D.H. Kim, Chem. Eng. J. 174 (2011) 242. https://doi.org/10.1016/j.cej.2011.09.011
  34. J.S. Cha, J.C. Choi, J.H. Ko, Y.K. Park, S.H. Park, K.E. Jeong, S.S. Kim, J.K. Jeon, Chem. Eng. J. 156 (2010) 321. https://doi.org/10.1016/j.cej.2009.10.027
  35. G. Ramis, M.A. Larrubia, J. Mol. Catal. A: Chem. 215 (2004) 161. https://doi.org/10.1016/j.molcata.2004.01.016
  36. M.J. Yu, A. Vinu, S.H. Park, J.K. Jeon, S.H. Jhung, Y.K. Park, Sci. Adv. Mater. 6 (2014) 1511. https://doi.org/10.1166/sam.2014.1830

Cited by

  1. Thermogravimetric characteristics of α-cellulose and decomposition kinetics in a micro-tubing reactor vol.33, pp.11, 2015, https://doi.org/10.1007/s11814-016-0143-1
  2. CO2 decomposition using metal ferrites prepared by co-precipitation method vol.33, pp.11, 2016, https://doi.org/10.1007/s11814-016-0192-5
  3. Cu2+ ion reduction in wastewater over RDF-derived char vol.18, pp.None, 2016, https://doi.org/10.5714/cl.2016.18.049
  4. Adsorptive removal of atmospheric pollutants over Pyropia tenera chars vol.19, pp.None, 2015, https://doi.org/10.5714/cl.2016.19.079
  5. Recent advances in the catalytic hydrodeoxygenation of bio-oil vol.33, pp.12, 2016, https://doi.org/10.1007/s11814-016-0214-3
  6. Prospective application of carbon-silica derived from SiC-Si sludge as a support for Fe catalysts vol.34, pp.1, 2015, https://doi.org/10.1007/s11814-016-0241-0
  7. Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures vol.9, pp.6, 2019, https://doi.org/10.3390/catal9060560