DOI QR코드

DOI QR Code

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita (Department of Anatomy, Dongguk University College of Medicine) ;
  • Lee, HyunSook (Dongguk Medical Institute, Dongguk University College of Medicine) ;
  • Islam, Md. Ariful (Department of Anatomy, Dongguk University College of Medicine) ;
  • Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University) ;
  • Moon, Il Soo (Department of Anatomy, Dongguk University College of Medicine)
  • Received : 2014.09.04
  • Accepted : 2015.02.11
  • Published : 2015.05.31

Abstract

Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

Keywords

References

  1. Berger, M., Chen, H., Reutter, W., and Hinderlich, S. (2002). Structure and function of N-acetylglucosamine kinase. Identification of two active site cysteines. Eur. J.Biochem. 269, 4212-4218. https://doi.org/10.1046/j.1432-1033.2002.03117.x
  2. Bregman, D.B., Du, L., van der Zee, S., and Warren, S.L. (1995). Transcription dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell Biol. 129, 287-298. https://doi.org/10.1083/jcb.129.2.287
  3. Brewer, G.J., Torricelli, J.R., Evege, E.K., and Price, P.J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576. https://doi.org/10.1002/jnr.490350513
  4. Datta, A. (1970). Studies on hog spleen N- acetylglucosamine kinase. I. Purification and properties of N-acetylglucosamine kinase. Biochim. Biophys. Acta. 220, 51-60. https://doi.org/10.1016/0005-2744(70)90228-7
  5. Fawcett, D.W. (1966). On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119, 129-145. https://doi.org/10.1002/aja.1001190108
  6. Fox, A.H., Lam, Y.W., Leung, A.K., Lyon, C.E., Andersen, J., Mann, M., and Lamond, A.I. (2002). Paraspeckles: a novel nuclear domain. Curr. Biol.12, 13-25. https://doi.org/10.1016/S0960-9822(01)00632-7
  7. Fox, A.H., Bond, C.S., and Lamond, A.I. (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol. Biol. Cell 16, 5304-5315. https://doi.org/10.1091/mbc.E05-06-0587
  8. Fu, X.D. (1995). The superfamily of arginine/serine-rich splicing factors. RNA 1, 663- 680.
  9. Giglia-Mari, G., Miquel, C., Theil, A.F., Mari, P.O., Hoogstraten, D., Ng, J.M., Dinant, C., Hoeijmakers, J.H., and Vermeulen, W. (2006). Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol. 4, e156. https://doi.org/10.1371/journal.pbio.0040156
  10. Girard, C., Will, C.L., Peng, J., Makarov, E.M., and Kastner, B. (2012). Posttranscriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 3, 994. https://doi.org/10.1038/ncomms1998
  11. Glanzer, J., Miyashiro, K.Y., Sul, J.Y., Barrett, L., Belt, B., Haydon, P., and Eberwine, J. (2005). RNA splicing capability of live neuronal dendrites. Proc. Natl. Acad. Sci. USA 102, 16859-16864. https://doi.org/10.1073/pnas.0503783102
  12. Grange, J., Boyer, V., Fabian-Fine, R., Fredj, N.B., Sadoul, R., and Goldberg, Y. (2004). Somatodendritic localization and mRNA association of the splicing regulatory protein Sam68 in the hippocampus and cortex. J. Neurosci. Res. 75, 654-666. https://doi.org/10.1002/jnr.20003
  13. Gray, T.A., Smithwick, M.J., Schaldach, M.A., Martone, D.L., Graves, J.A., McCarrey, J.R., and Nicholls, R.D. (1999). Concerted regulation and molecular evolution of the duplicated SNRPB'/B and SNRPN loci. Nucleic Acids Res. 27, 4577-4584. https://doi.org/10.1093/nar/27.23.4577
  14. Hart, G.W., Slawson, C., Ramirez-Correa, G., and Lagerlof, O. (2011). Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825-858. https://doi.org/10.1146/annurev-biochem-060608-102511
  15. Hinderlich, S., Nöhring, S., Weise, C., Franke, P., Stäsche, R., and Reutter, W. (1998). Purification and characterization of Nacetylglucosamine kinase from rat liver: comparison with UDPN- acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Eur. J. Biochem. 252, 133-139. https://doi.org/10.1046/j.1432-1327.1998.2520133.x
  16. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K., and Reutter, W. (2000). Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301-3308. https://doi.org/10.1046/j.1432-1327.2000.01360.x
  17. Hurley, J.H. (1996). The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu. Rev. Biophys. Biomol. Struct. 25, 137-162. https://doi.org/10.1146/annurev.bb.25.060196.001033
  18. Jensen, K.B., Dredge, B.K., Stefani, G., Zhong, R., Buckanovich, R.J., Okano, H.J., Yang, Y.Y., and Darnell, R.B. (2000). Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25, 359-371. https://doi.org/10.1016/S0896-6273(00)80900-9
  19. Jurica, M.S., and Moore, M.J. (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5-14. https://doi.org/10.1016/S1097-2765(03)00270-3
  20. Lagier-Tourenne, C., and Cleveland, D.W. (2009). Rethinking ALS: the FUS about TDP-43. Cell 136, 1001-1004. https://doi.org/10.1016/j.cell.2009.03.006
  21. Lee, H.S., Cho, S.J., and Moon, I.S. (2014a). The non-canonical effect of N-acetyl-D-glucosamine Kinase on the formation of neuronal dendrites. Mol. Cells 37, 248-256. https://doi.org/10.14348/molcells.2014.2354
  22. Lee, H.S., Dutta, S., and Moon, I.S. (2014b). Upregulation of Dendritic Aroborzation by N-acetylglucosamine Kinase is not dependent on its Kinase activity. Mol. Cells 37, 322-329. https://doi.org/10.14348/molcells.2014.2377
  23. Li, B., and Kohler, J.J. (2014). Glycosylation of the nuclear pore. Traffic 15, 347-361. https://doi.org/10.1111/tra.12150
  24. Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., and Fu, X.D. (2008). The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15, 819-826. https://doi.org/10.1038/nsmb.1461
  25. McAllister, G., Amara, S.G., and Lerner, M.R. (1988). Tissuespecific expression and cDNA cloning of small nuclear ribonucleoprotein- associated polypeptide N. Proc. Natl. Acad. Sci. USA 85, 5296-5300. https://doi.org/10.1073/pnas.85.14.5296
  26. Moon, I.S., Cho, S.J., Jin, I., and Walikonis, R. (2007). A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol. Cells 24, 76-82.
  27. Moon, I.S., Lee, H.S., Park, S.D., and Seog, D.H. (2010). immunonucleochemistry: a new method for in situ detection of antigens in the nucleus of cells in culture. Cytotechnol. 62, 83-93. https://doi.org/10.1007/s10616-010-9266-0
  28. Naganuma, T., and Hirose, T. (2013). Paraspeckle formation during the biogenesis of long noncoding RNAs. RNA Biol. 10, 456-461. https://doi.org/10.4161/rna.23547
  29. Nonnekens ,J., Cabantous, S., Slingerland, J., Mari, P.O., and Giglia- Mari, G. (2013). In vivo interactions of TTDA mutant proteins within TFIIH. J. Cell Sci. 126, 3278-3283. https://doi.org/10.1242/jcs.126839
  30. Racca, C., Gardiol, A., Eom, T., Ule, J., Triller, A., and Darnell, R.B. (2010). The neuronal splicing factor Nova co-localizes with target RNAs in the dendrite. Front. Neural Circuits 4, 5.
  31. Shav-Tal, Y., and Zipori, D. (2002). PSF and p54(nrb)/NonO-multifunctional nuclear proteins. FEBS Lett. 531, 109-114, https://doi.org/10.1016/S0014-5793(02)03447-6
  32. Shav-Tal, Y., Blechman, J., Darzacq, X., Montagna, C., Dye, B. T., Patton, J. G., Singer, R. H., and Zipori, D. (2005). Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 16, 2395-2413. https://doi.org/10.1091/mbc.E04-11-0992
  33. Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., and Leuchowius, K.J. (2006). Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995-1000. https://doi.org/10.1038/nmeth947
  34. Spector, D.L. (2001). Nuclear domains. J. Cell Sci. 114, 2891-2893.
  35. Takeda,S., Yamazaki, H., Seog, D.H., Kanai, Y., Terada, S., and Hirokawa, N. (2000). Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265. https://doi.org/10.1083/jcb.148.6.1255
  36. Wei, X., Somanathan, S., Samarabandu, J., and Berezney, R. (1999). Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J. Cell Biol. 146, 543-558. https://doi.org/10.1083/jcb.146.3.543
  37. Weihofen, W.A., Berger, M., Chen, H., Saenger, W., and Hinderlich, S. (2006). Structures of human N-acetylglucosamine kinase in two complexes with N-acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J. Mol. Biol. 364, 88-399.
  38. Wells, L., Vosseller, K., and Hart, G.W. (2003). A role for Nacetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol. Life Sci. 60, 222-228. https://doi.org/10.1007/s000180300017
  39. Zachara, N.E., O'Donnell, N., Cheung, W.D., Mercer, J.J., Marth, J.D., and Hart, G.W. (2004). Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133-30142. https://doi.org/10.1074/jbc.M403773200
  40. Zimber, A., Nguyen, Q.D., and Gespach, C. (2004). Nuclear bodies and compartments: functional roles and cellular signaling in health and disease. Cell. Signal. 16, 1085-1104. https://doi.org/10.1016/j.cellsig.2004.03.020

Cited by

  1. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division vol.39, pp.9, 2016, https://doi.org/10.14348/molcells.2016.0119
  2. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0120
  3. Genetic polymorphisms associated with pancreatic cancer survival: a genome-wide association study vol.141, pp.4, 2017, https://doi.org/10.1002/ijc.30762
  4. N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points vol.47, pp.8, 2015, https://doi.org/10.1038/emm.2015.48
  5. Tsetse fly ( Glossina pallidipes) midgut responses to Trypanosoma brucei challenge vol.10, pp.1, 2017, https://doi.org/10.1186/s13071-017-2569-7
  6. Serine/Threonine Protein Kinase STK16 vol.20, pp.7, 2015, https://doi.org/10.3390/ijms20071760
  7. N -Acetyl- D -Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010129
  8. Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology vol.101, pp.2, 2015, https://doi.org/10.1152/physrev.00043.2019
  9. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function vol.22, pp.15, 2015, https://doi.org/10.3390/ijms22158048