DOI QR코드

DOI QR Code

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season

차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리

  • Kim, Sung Eun (Department of Plant and Food Sciences, Sangmyung Univ.) ;
  • Lee, Jae Eun (Department of Plant and Food Sciences, Sangmyung Univ.) ;
  • Lee, Sang Don (Department of Plant and Food Sciences, Sangmyung Univ.) ;
  • Kim, Hak Sun (Department of Plant and Food Sciences, Sangmyung Univ.) ;
  • Chun, Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Jeong, Woo Ri (Agricultural corporation SERON) ;
  • Lee, Moon Haeng (Buyeo Tomato Experiment Station, C.A.R.E.S.) ;
  • Kim, Young Shik (Department of Plant and Food Sciences, Sangmyung Univ.)
  • 김성은 (상명대학교 식물식품공학과) ;
  • 이재은 (상명대학교 식물식품공학과) ;
  • 이상돈 (상명대학교 식물식품공학과) ;
  • 김학선 (상명대학교 식물식품공학과) ;
  • 전희 (농촌진흥청 원예특작과학원) ;
  • 정우리 (농업법인회사 세론) ;
  • 이문행 (부여토마토시험장) ;
  • 김영식 (상명대학교 식물식품공학과)
  • Received : 2015.01.19
  • Accepted : 2015.03.02
  • Published : 2015.03.31

Abstract

This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

본 실험은 광파장 선택형 차광제와 이류체 포그시스템을 이용하여 고온기 시설내 고온과 건조문제를 해소할 수 있는 적정 냉각법을 구명하기 위하여 수행되었다. 실험처리는 차광제와 이류체 포그시스템을 설치하지 않은 대조구(Non), 이류체 포그시스템만 설치하여 작동한 처리(Fog), 차광제만 도포한 처리(Coat), 외부에 차광제를 도포하고 내부에 이류체 포그시스템을 작동한 처리(F&C) 등이었다. 유입 일사량(열량)은 Non, Fog, Coat, F&C 순으로 많았다. 시설내 기온을 낮추는 방법으로는 이류체 포그시스템이 더 효과적이었다. 또한 이류체 포그시스템을 처리하면 상대습도도 적절히 조절할 수 있었다. 작물의 품온은 다른 처리구에 비해 대조구에서 약 $6^{\circ}C$ 이상 높았다. 연구결과, 고온기 시설내 광, 온도, 상대습도 환경조절에 가장 효과적인 방법은 이류체 포그시스템과 차광제 도포를 함께 하는 것이나, 효과 및 경제성을 함께 고려한다면 이류체 포그시스템을 활용하는 것이 가장 좋은 것으로 판단된다. 그러나 단동하우스의 경우에는 구조적 제약으로 이류체 포그시스템의 설치보다 광선 선택형 차광제를 도포하는 것이 더 좋은 방법으로 사료된다.

Keywords

References

  1. An, C.G., Y.H. Hwang, H.S. Yoon, J.S. Shim, J.U. An, and Y.H. Chang. 2010. Effects of shading agent on growth and yield of paprika. Kor. J. Hort. Sci. Technol. 28(Supplement 1): 172(Abstract).
  2. Bernard, F., I. Sache, F. Suffert, and M. Chelle. 2013. The development of a foliar fungal pathogen does react to leaf temperature. New Phytologist 198: 232-240. https://doi.org/10.1111/nph.12134
  3. Giorio, P., V. Nuzzo, G. Guida, and R. Albrizio. 2012. Black leaf-clips of a commercial fluorometer increased leaf temperature during dark adaptation under high solar radiation. Photosynthetica 50: 467-471. https://doi.org/10.1007/s11099-012-0042-6
  4. Ha, J.B., C.S. Lim, H.Y. Kang, Y.S. Kang, S.J. Hwang, H.W. Mun, and C.G. An. 2012. Effect of shading methods on growth and fruit quality of paprika in summer season. J. of Bio-Environ. Con. 21: 419-427. https://doi.org/10.12791/KSBEC.2012.21.4.419
  5. Kim, Y.B., J.C. Park, S.K. Lee, S.T. Kim, W.J. La, M.R. Huh, and S.W. Jeong. 2006. Analysis of cooling effect on the plastic film cover of greenhouse module depending on the shade and water curtain. J. of Bio-Environ. Con. 15: 306-316.
  6. Lee, H.W. and Y.S. Kim. 2011. Application of low pressure fogging system for commercial tomato greenhouse cooling. J. of Bio-Environ. Con. 20:1-7.
  7. Lee, J.H., Y.B. Lee, J.K. Kwon, N.J. Kang, H.J. Kim, Y.H. Choi, J.M. Park, and H.C. Rhee. 2006. Effect of greenhouse cooling and transplant quality using geothermal heat pump system. J. of Bio-Environ. Con. 15: 211-216.
  8. Lee, S.G., H.W. Lee, K.D. Kim, and J.W. Lee. 2001. Effect of shading rate and method on inside air treatment change in greenhouse. J. of Bio-Environ. Con. 10: 80-87.
  9. Lee, S.G., J.W. Lee, and H.W. Lee. 1998a. The influence of outside temperature upon shading effect in greenhouse. Proc. of the Kor. Soc. of Agricultural engineers 1998 conference. p. 243-249.
  10. Lee, S.G., J.W. Lee, H.W. Lee, and Z.H. Lee. 1998b. The effect of shading of on the inside temperature of greenhouse. Proc. of the Kor. Soc. of Agricultural engineers 1998 conference. p. 33-38.
  11. Sethi, V.P. and S.K. Sharma. 2007. Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy 81: 1447-1459. https://doi.org/10.1016/j.solener.2007.03.004
  12. Vermeulen, K., J.M. Aerts, J. Dekock, P. Bleyaert, D. Berckmans, and K. Steppe. 2012. Automated leaf temperature monitoring of glasshouse tomato plants by using a leaf energy balance model. Agriculture 87:19-31.
  13. Woo, Y.H. 2000. The technology for effective growing management of horticultural crop at summer season. National Agricultural Mechanization Research Institute. Rural Development Administration. p. 5-30.