DOI QR코드

DOI QR Code

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay

점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발

  • Received : 2014.12.01
  • Accepted : 2014.12.26
  • Published : 2015.03.30

Abstract

Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

최근 해양구조물의 건설이 활발해짐에 따라 해상 부유식 구조체를 경제적으로 지지할 수 있는 새로운 앵커형식을 개발하려는 연구가 이루어지고 있다. 본 연구에서는 기존의 대구경 단일형 석션파일 대신에 다수의 중구경 석션파일을 콘크리트 파일캡으로 결합한 그룹 석션파일에 대하여 연구하였다. 그룹 석션파일은 이동과 회전이 함께 발생하는 복잡한 지지거동을 보이기 때문에 일반적인 설계법을 적용하기 어렵다. 그러므로, 본 연구에서는 점성토 지반에 근입된 그룹 석션파일의 수평방향 지지력을 산정하는 수치 모델링 기법을 개발하였다. 본 기법은 파일을 보요소, 주변지반의 저항력을 비선형 스프링으로 모사한다. 본 기법의 적용성을 분석하기 위하여 동일한 조건에 대하여 3차원 유한요소해석을 수행하여 수평방향 하중-변위 곡선을 서로 비교하였다. 비교결과, 제안된 기법이 지지력을 과소평가하고 최대 지지력이 발생하는 변위는 크게 산정하는 것으로 나타났다. 그러므로, 유한요소해석 결과를 실제거동을 모사할 수 있는 정밀해로 가정한 후 개발된 설계 모델링 기법의 결과를 보정할 수 있는 지반저항력 보정계수를 제안하였다.

Keywords

References

  1. Abdel-Rahman, K. and Achmus, M. (2005), "Finite element modeling of horizontally loaded monopile foundations for offshore wind energy converters in Germany," Frontiers in Offshore Geotechnics: ISFOG, pp.391-396.
  2. Andersen, K. H., Murff, J. D., Randolph, M. F., Clukey, E. C., Erbrich, C. T., Jostad, H. P., Hansen, B., Aubeny, C., Sharma, P. and Supachawarote, C. (2005), "Suction anchors for deepwater applications", Keynote Lecture, Proceedings of International Symposium on Frontiers in Offshore Geotechnics, 1. Perth 2005. pp.3-30.
  3. API (2007), Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute.
  4. Colliat, J. L., Boisard, P., Andersen, K. and Schroeder, K. (1995), "Caisson Foundations as Alternative Anchors for Permanent Mooring of a Process Barge Offshore Congo", Proceedings of Offshore Technology Conference, OTC 7797, pp.919-929.
  5. Das, B. M. (2011), Geotechnical Engineering Handbook, J. Ross Publishing, USA.
  6. Ensoft, Inc.(2004), A Program for the analysis of piles and drilled shafts under lateral loads (LPILE Plus Ver 5.0), Technical Manual.
  7. Ensoft, Inc.(2010), A Program for the analysis of a group of piles subjected to vertical and lateral loading (Group Ver 8.0), Technical Manual.
  8. Hung L. C., Kim, S. R. (2012), "Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay", Ocean Engineering, Vol.52, pp.75-82. https://doi.org/10.1016/j.oceaneng.2012.06.001
  9. Hung, L. C. and Kim, S. R. (2014a), "Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay", Ocean-Engineering, Vol.85. pp.100-109. https://doi.org/10.1016/j.oceaneng.2014.04.025
  10. Hung, L. C. and Kim, S. R. (2014b), "Evaluation of undrained bearing capacities of bucket foundations under combined loads", Marine Georesources and Geotechnology, Vol.32, No.1, pp.76-92. https://doi.org/10.1080/1064119X.2012.735346
  11. Jeanjean, P. (2009), "Re-assessment of p-y curves for soft clays from centrifuge testting and finite element modeling," Offshore Technology Conference, Texas, USA, OTC20158.
  12. KICT (2008), Development of construction technology for concrete floated offshore infrastructures, Planning report, KICT 2008-043, pp.3-8.
  13. KICT (2011), Development of novel technologies for low-cost and high-efficiency suction piles(II), KICT 2011-091, pp.53-56.
  14. Kim, Y.H., Jeong, S.S., Kim, J.H. and Lee, Y.G. (2007), "Effects of Lateral Pile Rigidity of Offshore Drilled Shafts by Developing p-y Curves in Marine Clay", Journal of KGS, Vol.23, No.6, pp.37-51.
  15. Lee, J.H., Lee, S.H. and Kim, S.R. (2013), "Horizontal Bearing Behavior of Group Suction Piles by Numerical Analysis", Journal of KGS, Vol.29, No.11, pp.119-127.
  16. Matlock, H. (1970), "Correlation for design of laterally loaded piles in soft clays," Proceedings of Offshore Technology Conference, Houston Texas, pp.577-594.
  17. Midas IT(2012), Midas Civil User's Manual.
  18. Randolph, M. F., Cassidy, M. J., Gourvenec, S. M. & Erbrich, C. (2005), "Challenges of offshore geotechnical engineering", Proc. 16th Int. Conf. Soil Mech. Geotech. Engng, Osaka, 1, pp.123-176.
  19. Simulia (2010), Abaqus User's Manual. Dassault Systemes Simulia Corp.
  20. Taiebat H. A., Carter J. P. (2000), "Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading", Geotechnique, Vol.50, No.4, pp.409-418. https://doi.org/10.1680/geot.2000.50.4.409
  21. Yun G. and Bransby M. F. (2007), "The undrained vertical bearing capacity of skirted foundations in undrained soil", Soils and Foundations, Vol.47, No.3, pp.493-506. https://doi.org/10.3208/sandf.47.493

Cited by

  1. 3D numerical prediction of failure behaviour for the straight and curved parts of retaining wall according to various heights vol.9, pp.1, 2015, https://doi.org/10.1186/s40703-018-0091-1