DOI QR코드

DOI QR Code

Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin

낙동강 유역권 내 정수생태계의 동물플랑크톤 군집 동태

  • Kim, Seong-Ki (Dept. of Biological Sciences, Pusan National Univ.) ;
  • Hong, Dong-gyun (Dept. of Biological Sciences, Pusan National Univ.) ;
  • Kang, MeeA (Dept. of Environmental Engineering, Andong National Univ.) ;
  • Lee, Kyung-Lak (Nakdong River Environment Research center, National institute of Environmental Research Environmental Research) ;
  • Lee, Hak Young (Dept. of Biological Sciences, Chonnam National Univ.) ;
  • Joo, Gea-Jae (Dept. of Biological Sciences, Pusan National Univ.) ;
  • Choi, Jong-Yun (National Institute of Ecology)
  • Received : 2015.02.23
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

In order to estimate the influence of environmental factors on zooplankton communities in lentic freshwater ecosystems, 20 reservoirs and wetlands were monitored by season in 2013. A total of 109 species of zooplankton were identified during the study period. Zooplankton assemblage showed a different distribution in its density and diversity in accordance with the seasons. In particular, the density of zooplankton (98 species and 603ind. L-1) was the most in autumn when compared to the other seasons. In order to effectively analyze zooplankton distribution that are affected by various environmental factors, a Self-Organizing Map (SOM) was used, which extracts information through competitive and adaptive properties. A total of 11 variables (8 environment factors and 3 groups of zooplankton) were patterned on to the SOM. Based on a U-matrix, four clusters were identified from the model. Among zooplankton communities, rotifer displayed a positive relationship with water temperature, and cladocerans and copepod were positively related to conductivity, chlorophyll a, and nutrient factor (i. e. TN and TP). In contrast, high dissolved oxygen appeared to have a negative effect on zooplankton distribution. Consequently, the SOM results depicted a clear pattern of zooplankton density clusters partitioned by environmental factors, which play a key role in determining the seasonal distribution of zooplankton groups in lentic freshwater ecosystem.

낙동강 수계의 20개 저수지 및 습지에서 환경요인에 대한 동물플랑크톤 군집의 영향을 평가하기 위해 계절별 조사를 수행하였으며 다양한 환경 요인에 대한 동물플랑크톤의 영향을 효과적으로 분석하기 위해 Self-Organizing Map(SOM) 분석을 이용하였다. 총 109종의 동물플랑크톤 종이 동정되었으며, 동물플랑크톤의 밀도와 종수는 계절에 따라 상이한 분포를 나타냈다. 특히, 가을은 다른 계절보다 동물플랑크톤의 높은 종수와 밀도를 기록하였다(98종, 603 ind. /L). 윤충류는 다른 환경요소보다 수온과 밀접하게 연관되었으며, 이는 계절에 따른 영향을 크게 받는 것으로 보인다. 지각류와 요각류는 전기전도도, Chl. a, 영양염류(TN, TP) 대해서 영향 받았으며, 이는 오염원 및 먹이원에 영향을 크게 받는 것으로 보인다. 그러나, 용존산소가 높은 정수역에서는 대부분 동물플랑크톤이 낮은 밀도를 보였다. 저수지 및 습지에서 출현하는 동물플랑크톤 군집은 수온이나 영양염류 등의 환경요인에 대해 주로 영향 받는 것으로 평가되었다. 결론적으로 저수지와 습지와 같은 정수역에서 출현하는 동물플랑크톤 군집의 조성 및 밀도는 환경요인과 밀접하게 연관되는 것으로 나타났으며, 환경요인의 변화는 동물플랑크톤의 계절성을 결정하는 중요한 요인인 것으로 평가되었다.

Keywords

References

  1. Allan, J.D.(1976) Life history patterns in zooplankton. Am. Nat. 110: 165-180. https://doi.org/10.1086/283056
  2. Berzins, B. and B. Pejler(1989) Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223-231. https://doi.org/10.1007/BF00006092
  3. Blanco, S., S. Romo, M.J. Villena and S. Martinez(2003) Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506: 473-480.
  4. Blindow, I., A. Hargeby, B.M.A. Wagner and G. Andersson(2000) How important is crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation?. Freshwater Biol. 44: 185-197. https://doi.org/10.1046/j.1365-2427.2000.00552.x
  5. Bunn, S.E. and P.I. Boon(1993) What sources of organic carbon drive food webs in billabongs?. Oecologia 96: 85-94. https://doi.org/10.1007/BF00318034
  6. Burks, R.L., D.M. Lodge, E. Jeppesen and T.L. Lauridsen(2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x
  7. Choi, J.Y., G.H. La, S.K. Kim, K.S. Jeong and G.J. Joo(2013a) Zooplankton community distribution in aquatic plants zone: Influence of epiphytic rotifers and cladocerans in accordance with aquatic plants cover and types. Korean J. Ecol. Environ. 46: 86-93.(in Korean with English abstract) https://doi.org/10.11614/KSL.2013.46.1.086
  8. Choi, J.Y., K.S. Jeong and G.J. Joo(2014b) Zooplankton community distribution in shallow reservoirs during winter: influence of environmental factors on Cyclops vicinus(Copepoda: cyclopoida). Korean J. Ecol. Environ. 37: 99-104.(in Korean with English abstract) https://doi.org/10.5141/ecoenv.2014.012
  9. Choi, J.Y., K.S. Jeong, G.H. La, H.W. Kim, K.H. Chang and G.J. Joo (2011) Inter-annual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. J. Ecol. Field Biol. 34: 49-58. https://doi.org/10.5141/JEFB.2011.007
  10. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo(2014a) Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands(South Korea). J. Limnol. 73: 11-16.
  11. Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo(2013b) Zooplankton community distribution and food web structure in small reservoirs: influence of land uses around reservoirs and littoral aquatic plant on zooplankton. Korean J. Ecol. Environ. 46: 332-342.(in Korean with English abstract)
  12. Chon, T.S., Y.S. Park, K.H. Moon and E.Y. Cha(1996) Patterning communities by using an artificial neural network. Ecol. Model. 90: 69-78. https://doi.org/10.1016/0304-3800(95)00148-4
  13. Chon, T.S., Y.S. Park and E.Y Cha(2000) Patterning of community changes in bentic macroinvertebrates collected from urbanized streams for the short term prediction by temporal artificial neuronal networks. In: Artificial Neuronal Networks: Application to Ecology and Evolution(Lek, S. and J.F. Guegan, eds.). Springer, Berlin. pp. 99-114.
  14. Choudhary, S., D.K. Singh and V. Kumar(2014) Seasonal variation of phytoplankton in response to abiotic parameters in Basman Lake, Motihari District(North Bihar) India. Environ. Ecol. 32: 134-137.
  15. David, V., B. Sautour, P. Chardy and M. Leconte(2005) Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary(France). Estuar. Coast. Shelf S. 64: 171-184. https://doi.org/10.1016/j.ecss.2005.01.014
  16. Dejen, E., J. Vijverberg, L.A. Nagelkerke and F.A. Sibbing(2004) Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake(L. Tana, Ethiopia). Hydrobiologia 513: 39-49. https://doi.org/10.1023/B:hydr.0000018163.60503.b8
  17. Devetter, M.(1998) Influence of environmental factors on the rotifer assemblage in an artificial lake. Hydrobiologia 387: 171-178.
  18. Elser, J.J., K. Hayakawa and J. Urabe(2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82: 898-903. https://doi.org/10.2307/2680208
  19. Gannon, J.E. and R.S. Stemberger(1978) Zooplankton(especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Micros. Soc. 97: 16-35. https://doi.org/10.2307/3225681
  20. Garcia, H.L. and I.M. Gonzalez(2004) Self-Organizing Map and clustering for wastewater treatment monitoring. Eng. Appl. Artif. Intel. 17: 215-225. https://doi.org/10.1016/j.engappai.2004.03.004
  21. Horppila, J., P. Eloranta, A. Liljendahl-Nurminen, J. Niemisto and Z. Pekcan-Hekim(2009) Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake. Aquat. Ecol. 43: 91-103. https://doi.org/10.1007/s10452-007-9158-3
  22. Jeong K.S., D.K. Kim, T.S. Chon and G.J. Joo(2005) Machine learning application to the Korean freshwater ecosystems. Korean J. Ecol. 28: 405-415. https://doi.org/10.5141/JEFB.2005.28.6.405
  23. Jeppesen, E., J.P. Jensen, M. Sondergaard and T. Lauridsen(1999) Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. In Shallow Lakes' 98, Springer Netherlands, pp. 217-231.
  24. Kim, H.S., B.C. Kim, E.M. Choi and S.J. Hwang(2000) Effects of cyanobacterial bloom on zooplankton community dynamics in several eutrophic lakes. Korean J. Limnol. 33: 366-373.
  25. Kim, H.W., S.J. Hwang and G.J. Joo(2000) Zooplankton grazing on bacteria and phytoplankton in a regulated large river(Nakdong River, Korea). J. Plankton Res. 22: 1559-1577. https://doi.org/10.1093/plankt/22.8.1559
  26. Kim, H.W., G.H., La, J.H. Park, H.J. Song, K.S. Hwang, B.J. Lim and H.Y. Lee(2012) Community size structure of zooplankton assemblages in 29 lentic ecosystems on the Youngsan-Seomjin River basin(2010-2011). Korean J. Environ. Biol. 30: 64-70.(in Korean with English abstract)
  27. Kohonen, T., J. Hynninen, J. Kangas and J. Laaksonen(1996) Som pak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.
  28. Korea Ministry of Environment(2012) Water Pollution Investigation Method. pp. 93-1082.
  29. Manatunge, J., T. Asaeda and T. Priyadarshana(2000) The influence of structural complexity on fish-zooplankton interactions: a study using artificial submerged macrophytes. Environ. Biol. Fish 58: 425-438. https://doi.org/10.1023/A:1007691425268
  30. Miranda, L.E., C.S. Andrews and R. Kroger(2014) Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes. Aquat. Sci. 76: 41-50. https://doi.org/10.1007/s00027-013-0310-y
  31. Mizuno, T. and E. Takahashi(1991) An Illustrated Guide to Freshwater Zooplankton in Japan. Tokai University Press. pp. 1-556.
  32. Richardson, A.J.(2008) In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65: 279-295. https://doi.org/10.1093/icesjms/fsn028
  33. Sagrario, G., de los Angeles M.A.R.I.A. and E. Balseiro(2010) The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biol. 55: 2153-2166. https://doi.org/10.1111/j.1365-2427.2010.02475.x
  34. Sakamoto, M., K.H. Chang and T. Hanazato(2006) Inhibition of development of anti-predator morphology in the small cladoceran Bosmina by an insecticide: impact of an anthropogenic chemical on prey-predator interactions. Freshwater Biol. 51: 1974-1983. https://doi.org/10.1111/j.1365-2427.2006.01628.x
  35. Sakuma, M., T. Hanazato, A. Saji and R. Nakazato(2004) Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona(Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23. https://doi.org/10.1007/s10201-003-0110-5
  36. Son, M.W. and Y.G. Jeon(2003) Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. J. Korean Assoc. Reg. Geogr. 9: 66-76.(in Korean with English abstract)
  37. Sterner, R.W., D.D. Hagemeier, W.L. Smith and R.F. Smith(1993) Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr. 38: 857-871. https://doi.org/10.4319/lo.1993.38.4.0857
  38. Stich, H.B. and W. Lampert(1981) Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396-398. https://doi.org/10.1038/293396a0
  39. Stockwell, J.D. and W.G. Sprules(1995) Spatial and temporal patterns of zooplankton biomass in Lake Erie. ICES J. Mar. Sci. 52: 557-564. https://doi.org/10.1016/1054-3139(95)80070-0
  40. Varbiro, G., E. Acs, G. Borics, K. Erces, G. Feher, I. Grigorszky, T. Japport, G. Kocsis, E. Karsznai, K. Nagy, Zs. Nagy-Laszlo, Zs. Pilinszky and K.T. Kiss(2007) Use of self-organizing maps(SOM) for characterization of riverine phytoplankton associations in Hungary. Arch. Hydrobiol. 161: 388-394.
  41. Werner, E.E. and D.J. Hall(1974) Optimal foraging and the size selection of prey by the bluegill sunfish(Lepomis macrochirus). Ecology 55: 1042-1052. https://doi.org/10.2307/1940354
  42. Zaret, T.M. and J.S. Suffern(1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804-813. https://doi.org/10.4319/lo.1976.21.6.0804