DOI QR코드

DOI QR Code

Density Functional Theory Study on Polybenzimidazole with Sulfonic Acid Functional Group for PEMFC Applications

프로톤 교환 멤브레인 연료전지에 이용되는 폴리벤즈이미다졸 방열 소재의 술폰산기 영향에 대한 밀도범함수이론 연구

  • Kwon, Soonchul (School of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University)
  • 권순철 (조지아공과대학 토목환경공학부) ;
  • 이승걸 (부산대학교 유기소재시스템공학과)
  • Received : 2015.04.04
  • Accepted : 2015.05.25
  • Published : 2015.06.30

Abstract

In this study, we performed density functional theory (DFT) calculations to elucidate the effect of sulfonic acid functional group on the hydrophilicity of polybenzimidazole (PBI). We investigated the adsorption of $H_2O$ molecules on sulfonated PBI (SPBI) and on disulfonated PBI (DSPBI) with cis- or trans-conformation. We analyzed electronic properties such as charge re-distribution and electronic band gap in terms of the optimized structure of PBI systems. We found that PBI with higher degree of sulfonation shows greater hydrophilicity and that trans-DSPBI shows greater hydrophilicity than cis-DSPBI.

Keywords

References

  1. Q. F. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells", Prog. Polym. Sci., 2009, 34, 449-477. https://doi.org/10.1016/j.progpolymsci.2008.12.003
  2. T. S. Chung, "A Critical Review of Polybenzimidazoles: Historical Development and Future R&D", J. Macromol. Sci. R M C, 1997, C37, 277-301.
  3. E. W. Neuse, "Aromatic Polybenzimidazoles - Syntheses, Properties, and Applications", Adv. Polym. Sci., 1982, 47, 1-42. https://doi.org/10.1007/BFb0038530
  4. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of Selected Sulfonated Polymers as Proton-conducting Electrolytes for Polymer Electrolyte Fuel Cells", Solid State Ionics, 2002, 147, 189-194. https://doi.org/10.1016/S0167-2738(02)00011-5
  5. M. Kawahara, M. Rikukawa, and K. Sanui, "Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(benzimidazole)", Polym. Adv. Technol., 2000, 11, 544-547. https://doi.org/10.1002/1099-1581(200008/12)11:8/12<544::AID-PAT3>3.0.CO;2-N
  6. M. Kawahara, M. Rikukawa, K. Sanui, and N. Ogata, “Synthesis and Proton Conductivity of Sulfopropylated Poly(benzimidazole) Films”, Solid State Ionics, 2000, 136, 1193-1196.
  7. W. Koch and M. C. Holthausen, "A Chemist's Guide to Density Functional Theory", Wiley-VCH, Weinheim, 2001.
  8. $DMol^3$, Accelrys Inc., San Diego, 2005,
  9. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  10. J. P. Perdew, K. Burke, and Y. Wang, "Generalized Gradient Approximation for the Exchange-correlation Hole of a Manyelectron System", Phys. Rev. B, 1996, 54, 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533
  11. S. G. Lee, J. I. Choi, W. Koh, and S. S. Jang, "Adsorption of beta-D-glucose and Cellobiose on Kaolinite Surfaces: Density Functional Theory (DFT) Approach", Appl. Clay Sci., 2013, 71, 73-81. https://doi.org/10.1016/j.clay.2012.11.002
  12. S. Kwon, J. I. Choi, S. G. Lee, and S. S. Jang, "A Density Functional Theory (DFT) Study of $CO_2$ Adsorption on Mgrich Minerals by Enhanced Charge Distribution", Comp. Mater. Sci., 2014, 95, 181-186. https://doi.org/10.1016/j.commatsci.2014.07.042
  13. S. Kwon, J. Hwang, H. Lee, and W. R. Lee, "Interactive $CO_2$ Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study", Bull. Korean Chem. Soc., 2010, 31, 2219-2222. https://doi.org/10.5012/bkcs.2010.31.8.2219
  14. W. Koh, J. I. Choi, K. Donaher, S. G. Lee, and S. S. Jang, "Mechanism of Li Adsorption on Carbon Nanotube-Fullerene Hybrid System: A First-Principles Study", ACS Appl. Mater. Inter., 2011, 3, 1186-1194. https://doi.org/10.1021/am200018w
  15. W. Koh, J. I. Choi, E. Jeong, S. G. Lee, and S. S. Jang, "Li Adsorption on a Fullerene-Single Wall Carbon Nanotube Hybrid System: Density Functional Theory Approach", Curr. Appl. Phys., 2014, 14, 1748-1754. https://doi.org/10.1016/j.cap.2014.09.031
  16. W. Koh, J. I. Choi, S. G. Lee, W. R. Lee, and S. S. Jang, “Firstprinciples Study of Li Adsorption in a Carbon Nanotubefullerene Hybrid System”, Carbon, 2011, 49, 286-293. https://doi.org/10.1016/j.carbon.2010.09.022
  17. W. Koh, J. H. Lee, S. G. Lee, J. I. Choi, and S. S. Jang, "Li Adsorption on a Graphene-Fullerene Nanobud System: Density Functional Theory Approach", RSC Advances, 2015, 5, 32819-32825. https://doi.org/10.1039/C4RA15619F
  18. W. Koh, H. S. Moon, S. G. Lee, J. I. Choi, and S. S. Jang, "A First-principles Study of Lithium Adsorption on a Graphenefullerene Nanohybrid System", Chemphyschem, 2015, 16, 789-795. https://doi.org/10.1002/cphc.201402675
  19. S. Kwon, S. G. Lee, E. Chung, and W. R. Lee, "$CO_2$ Adsorption on $H_2O$-saturated BaO(100) and Induced Barium Surface Dissociation", Bull. Korean Chem. Soc., 2015, 36, 11-16. https://doi.org/10.1002/bkcs.10000
  20. H. S. Moon, J. H. Lee, S. Kwon, I. T. Kim, and S. G. Lee, "Mechanisms of Na Adsorption on Graphene and Graphene Oxide: Density Functional Theory Approach", Carbon Lett., 2015, 16, 116-120. https://doi.org/10.5714/CL.2015.16.2.116
  21. R. S. Mulliken, "Electronic Population Analysis on LCAO- MO Molecular Wave Functions. I", J. Chem. Phys., 1955, 23, 1833-1840. https://doi.org/10.1063/1.1740588
  22. A. Luzar and D. Chandler, "Structure and Hydrogen-Bond Dynamics of Water-Dimethyl Sulfoxide Mixtures by Computer-Simulations", J. Chem. Phys., 1993, 98, 8160-8173. https://doi.org/10.1063/1.464521