DOI QR코드

DOI QR Code

Antioxidant and Tyrosinase Inhibitory Effects of the Extract Mixtures of Perilla frutescens, Houttuynia cordata and Camellia sinensis

어성초, 자소엽, 녹차 식물 추출 혼합물의 항산화 및 Tyrosinase 저해 효과에 관한 연구

  • Lee, Kyung Eun (Department of Biotechnology, Yeungnam University) ;
  • Lee, Eun Sun (Department of Biotechnology, Yeungnam University) ;
  • Kang, Sang Gu (Department of Biotechnology, Yeungnam University)
  • 이경은 (영남대학교 생명공학부 생명공학전공) ;
  • 이은선 (영남대학교 생명공학부 생명공학전공) ;
  • 강상구 (영남대학교 생명공학부 생명공학전공)
  • Received : 2015.06.18
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

In the present study, antioxidant activities and tyrosinase inhibition of Perilla frutescens, Houttuynia cordata and Camellia sinensis extracts and the extract mixtures (PHC) were investigated. PHC showed 80.2% and 98.0% of free radical scavenging activity in DPPH and ABTS analysis, respectively, and 50% tyrosinase inhibition in $1000{\mu}g/mL$ concentration. HaCaT cells did not show cell toxicity in $100{\mu}g/mL$ of the PHC. Furthermore, HaCaT cell viability by co-culture with extract H. cordata was increased more than 10% compared with untreated cells. However, the cell viability was decreased in $500{\mu}g/mL$ of the extract C. sinensis and the PHC. These results suggested that about $100{\mu}g/mL$ concentration of the PHC showed proper tyrosinase inhibitory effect and antioxidant activities. The PHC could be used as multifunctional cosmeceutical agents.

본 연구에서는 항산화 기능을 가진 자소엽, 어성초 그리고 녹차 추출물들과 이들 추출물의 혼합물을 사용하여 항산화, 미백, 세포독성실험을 진행하였다. 자소엽, 어성초와 녹차의 추출물을 동일 양으로 혼합하였을 때 처리농도가 증가함에 따라 농도 의존적으로 DPPH와 ABTS 라디칼 소거활성이 높아졌으며, 추출물을 혼합한 경우 낮은 농도인 $10{\mu}g/mL$에서도 80.2%, 98.0%의 DPPH와 ABTS 라디칼을 소거시키는 우수한 항산화 효과를 나타내었다. 미백효과의 정도를 조사하기 위하여 tyrosinase 저해효과를 조사한 결과 자소엽과 녹차추출물 그리고 각 추출물의 혼합물이 농도 의존적으로 tyrosinase 저해효과가 증가되었다. HaCaT 세포를 사용한 세포독성실험의 경우 자소엽, 어성초 추출물의 경우 세포생존율이 무처리 대조군과 같거나 높게 나타났으며 특히 어성초추출물의 경우 $100{\mu}g/mL$에서 무처리 대조군 보다 10% 이상의 높은 생존율을 보였다. 녹차와 각 식물 추출물 혼합물의 경우 $500{\mu}g/mL$ 이상에서는 무처리 대조군에 비하여 세포생존율이 감소하였다. 그러므로 세 가지 식물의 추출물 혼합물이 $100{\mu}g/mL$ 농도일 때 세포에 안전하며 높은 항산화 활성과 함께 tyrosinase 저해 효과가 있었다.

Keywords

References

  1. P. Albertazzi, S. A. Steel, E. Clifford, and M. Bottazzi, Attitudes towards and use of dietary supplementation in a sample of postmenopausal women, Climacteric, 5(4), 374 (2002). https://doi.org/10.1080/cmt.5.4.374.382
  2. J. Kedziora and G. Bartosz, Down's syndrome: a pathway involving the lack of blance of reactive oxygen species, Free Radic. Biol. Med., 4(5), 317 (1988). https://doi.org/10.1016/0891-5849(88)90052-4
  3. E. E. Cross, B. Halliwell, E. T. Borish, W. A. Pryor, B. N. Ames, R. L. Saul, and J. M. McCord, Oxygen radicals and human disiease, Ann. Intren. Med., 107, 536 (1987).
  4. E. Y. Sozmen, T. Tanyakin, T. Onat, F. Kufay, and S. Erlacin, Ethanol-induced oxidative stress and membrane injury in rat erythrocytes, European J. of Clinical Chem. and Clinical Biochem., 32, 741 (1994).
  5. B. Frei, Academic Press, Inc., 25, ed. A Division of Harcourt Brace and Company, San Diego, California (1994).
  6. I. Fridorich, The biological activity of oxygen radicals, Science, 201, 875 (1978). https://doi.org/10.1126/science.210504
  7. I. A. Imlay and S. Linn, DNA damage and oxygen radical toxicity, Science, 240, 1302 (1986).
  8. A. L. Branen, Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene, J. Am. Oil Chem. Soc., 52, 59 (1991).
  9. S. M. Barlow, Food Antioxidant. ed. B. J. F. Hudson, 253, Elsevier, Amsterdam (1990).
  10. S. J. Yang, K. S. Youn, H. K. No, S. H. Lee, and J. H. Hong, Optimization of extraction conditions for mate (Ilex paraguarensis) ethanolic extracts, Korean J. Food, 18, 319 (2011). https://doi.org/10.11002/kjfp.2011.18.3.319
  11. S. J. Lee, J. H. Kim, M. J. Kim, S. M. Yoon, J. C. Jeong, and N. J. Sung, Effect of garlic and medicinal plants composites on antioxidant activity and lipid levels of liver in hypercholesterolemic rats, J. Life Sci., 19, 1769 (2009). https://doi.org/10.5352/JLS.2009.19.12.1769
  12. Z. D. Draelos, Botanicals as topical agents, Clin. Dermatol., 19, 474 (2001). https://doi.org/10.1016/S0738-081X(01)00187-0
  13. A. Chiu and A. B. Kimball, Topical vitamins, minerals and botanical ingredients as modulators of environmental and chronological skin damage, Br. J. Dermatol., 149, 681 (2003). https://doi.org/10.1046/j.1365-2133.2003.05540.x
  14. N. Ahmad and H. Mukhtar, Cutaneous photochemoprotection by green tea: a brief review, Skin Pharmacol, Appl. Skin Physiol., 14, 69 (2001). https://doi.org/10.1159/000056336
  15. C. K. Chung, S. S. Ham, S. Y. Lee, D. H. Oh, S. Y. Choi, I. J. Kang, and S. M. Nam, Effects of Houttuynia cordata ethanol extracts on serum lipids and antioxidant enzymesin rats fed high fat diet, J. Korean Soc. Food Sci. Nuir., 28, 205 (1999).
  16. B. J. Ha, Effects of Houttuynia cordata thunb on anti-oxidative activity against TCDD damage, J. Environ Sci., 12, 599 (2003).
  17. Y. Y. Chen, J. F. Liu, C. M. Chen, P. Y. Chao, and T. J. Chang, A study of antioxidative and antimutagenic effects of Houttuynia cordata thunb using an oxidized frying oil-fed model, J. Nutr. Sci. Vitaminol, 49, 327 (2003). https://doi.org/10.3177/jnsv.49.327
  18. J. H. Song, M. J. Kim, H. D. Kwon, and I. H. Park, Antimicrobial activity of fractional extracts from Houttuynia cordata root, J. Korean Soc. Food Sci. Nutr., 32, 1053 (2003). https://doi.org/10.3746/jkfn.2003.32.7.1053
  19. E. J. Cho, T. Yokozawa, D. Y. Rhyu, H. Y. Kim, N. Shibahara, and J. C. Park, The inhibitory effects of 12 medicinal plants and their component on lipid peroxidation, Am. J. Chin. Med., 31, 907 (2003). https://doi.org/10.1142/S0192415X03001648
  20. J. Kim, H. S. Ryu, J. H. Shin, and H. S. Kim, In vitro and ex vivo supplementation of Houttuynia cordata extract and immunomodulating effect in mice, J. Korean Soc. Food Sci. Nutr., 34, 167 (2005). https://doi.org/10.3746/jkfn.2005.34.2.167
  21. H. Ueda, C. Yamazaki, and M. Yamazaki, Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion, Biol. Pharm. Bull., 26, 560 (2003). https://doi.org/10.1248/bpb.26.560
  22. T. Makino, A. Furuta, H. Fujii, T. Nakagawa, H. Wakushima, K. Saito, and Y. Kano, Effect of oral treatment of Perilla frutescens and its constituents on type-1 allergy in mice, Biol. Pharm. Bull., 24, 1206 (2001). https://doi.org/10.1248/bpb.24.1206
  23. T. Y. Shin, S. H. Kim, S. H. Kim, Y. K. Kim, H. J. Park, B. S. Chae, H. J. Jung, and H. M. Kim, Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens, Immunopharmacol. Immunotoxicol., 22, 489 (2000). https://doi.org/10.3109/08923970009026007
  24. H. A. Oh, C. Park, H. J. Ahn, Y. S. Park, and H. M. Kim, Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions, Exp. Biol. Med. (Maywood), 236, 99 (2011). https://doi.org/10.1258/ebm.2010.010252
  25. T. Makino, Y. Furuta, H. Wakushima, H. Fujii, K. Saito, and Y. Kano, Anti-allergic effect of Perilla frutescens and its active constituents, Phytother. Res., 17, 240 (2003). https://doi.org/10.1002/ptr.1115
  26. U. K. Choi, O. H. Lee, S. I. Lim, and Y. C. Kim, Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against pseudomonas aeruginosa using the evolutionary operation factorial design technique, Int. J. Mol. Sci., 11, 3922 (2010). https://doi.org/10.3390/ijms11103922
  27. L. Meng, Y. F. Lozano, E. M. Gaydou, and B. Li, Antioxidant activities of polyphenols extracted from Perilla frutescens varieties, Molecules, 14, 133 (2008). https://doi.org/10.3390/molecules14010133
  28. N. H. Kim, D. C. Yang, and A. H. Eom, A phylogenetic relationships of Araliaceae based on PCR-RAPD and ITS sequences, Korean J. Plant Res., 17, 82 (2004).
  29. M. L. Blois, Antiocidant determination by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  30. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol, Med., 26, 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  31. C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62(44), 10701 (2014). https://doi.org/10.1021/jf503192x
  32. S. Y. Qusti, A. N. Abo-khatwa, and M. A. Bin Lahwa, Screening of antioxidant activity and phenolic content of selected food items cited in the Holly Quran, Eur. J. Biol. Sci., 2, 40 (2010).
  33. Y. M. Choi, M. H. Kim, J. J. Shin, J. M. Park, and J. S. Lee, The antioxidant activities of the some commercial teas, J. Kor. Soc. Nutr., 32, 723 (2003). https://doi.org/10.3746/jkfn.2003.32.5.723
  34. L. Milne, P. Nicotera, S. Orrenius, and M. J. Burkitt, Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Prooxidant and antioxidant properties of glutathione, Arch. Biochem. Biophys., 304, 102 (1993). https://doi.org/10.1006/abbi.1993.1327
  35. B. S. Wolfenden and R. L. Willson, Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse rsdiolysis studies of 2, 2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate), J. Chem. Soc. Perkin. Trans., 2, 805 (1982).
  36. A. Kitahara, U. Matsumoto, H. Ueda, and R. Ueoka, A remarkable antioxidation effect of natural phenol derivatives on the autoxidation of r-irradiated methyl linolate, Chem. Pharm. Bull., 40, 2208 (1992). https://doi.org/10.1248/cpb.40.2208
  37. T. Hatano, Constituents of natural medicines with scavenging effects on active oxygen species: Tannins and related polyphenols, Natural Medicines, 49(4), 357 (1995)
  38. V. J. Hearing and M. Jimenez, Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation, Int. J. Biochem., 19(12), 1141 (1987). https://doi.org/10.1016/0020-711X(87)90095-4
  39. T. Kuzumaki, A. Matsuda, K. Wakamatsu, S. Ito, and K. Ishikawa, Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes, Exp. Cell Res., 207(1), 33 (1993). https://doi.org/10.1006/excr.1993.1159
  40. V. del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
  41. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment Cell Res., 16(2), 101 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  42. F. Solano, S. Briganti, M. Picardo, and G. Ghanem, Hypopigmenting agents: an updated review on biological, chemical and clinical aspects, Pigment Cell Res., 19(6), 550 (2006). https://doi.org/10.1111/j.1600-0749.2006.00334.x
  43. H. S. Mason and E. W. Peterson, Melanoproteins I. Reactions between enzyme-generated quinones and amino acids. Biochim. Biophys. Acta., 111, 134 (1965). https://doi.org/10.1016/0304-4165(65)90479-4
  44. B. R. Lee and P. S. Park, Potentiating dietary green tea extracts anti-tumor activity of cisplatin in BALB/c mice bearing CT26 colon carcinoma, J. Kor. Soc. Food Sci. Nutr., 41(8), 1100 (2012). https://doi.org/10.3746/jkfn.2012.41.8.1100