DOI QR코드

DOI QR Code

Effect of Operating Conditions and Recovery of Water Back-washing in Spiral Wound Microfiltration Module Manufactured with PVDF Nanofibers for Water Treatment

수처리용 PVDF 나노섬유 나권형 정밀여과 모듈에서 운전조건의 영향과 물 역세척 회복

  • Kyung, Kyu Myung (Dept. of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin Yong (Dept. of Environmental Sciences & Biotechnology, Hallym University)
  • 경규명 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Received : 2015.04.12
  • Accepted : 2015.04.27
  • Published : 2015.04.30

Abstract

PVDF (polyvinylidene fluoride) nanofiber has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. Flat membranes with 0.3 and $0.4{\mu}m$ pore size respectively, were manufactured by PVDF nanofiber, and then each spiral wound module was prepared with them. A woven paper was not included in preparing the module with $0.3{\mu}m$ pore size; however, it was included the module with $0.4{\mu}m$ pore size. The permeate fluxes and rejection rates of the two modules were compared using pure water and simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing. In addition, the effect of flow rate and trans-membrane pressure on treatment efficiency and filtration resistance were investigated for the spiral wound module with $0.4{\mu}m$ pore size.

강도가 강하고 내약품성, 무독성, 내연소성 등의 장점을 가지고 있는 PVDF (polyvinylidene fluoride) 나노섬유로 기공이 각각 0.3, $0.4{\mu}m$ 평막을 제조한 후, 그 평막으로 나권형 모듈을 각각 제작하였다. 그중 $0.3{\mu}m$ 모듈은 제조 시 부직포를 포함하지 않았고, 기공이 $0.4{\mu}m$ 모듈은 제조 시 부직포를 포함하였다. 카올린과 휴믹산으로 조제한 모사용액과 순수를 대상으로 두 모듈의 투과선속와 제거율을 비교하였고, 물 역세척을 실시한 후 회복률과 여과저항을 계산하였다. 또한, 기공이 $0.4{\mu}m$인 나권형 모듈을 사용하여 유량과 막간압력차가 처리율과 여과저항에 미치는 영향을 고찰하였다.

Keywords

References

  1. J. T. Kim, H. Y. Hwang, B. P. Hong, and H. S. Byun, "The background and direction of R&D project for advanced technology of wastewater treatment and reuse", Membr. J., 21, 277 (2011).
  2. G. Owen, M. Bandi, J. A. Howell, and S. J. Churchouse, "Economic assessment of membrane processes for water and waste water treatment", J. Membr. Sci., 102, 77 (1995). https://doi.org/10.1016/0376-7388(94)00261-V
  3. T. Oe, H. Koide, H. Hirokawa, and K. Okukawa, "Performance of membrane filtration system used for water treatment", Desalination, 106, 107 (1996). https://doi.org/10.1016/S0011-9164(96)00098-7
  4. R. J. Wakeman and C. J. Williams, "Additional techniques to improve microfiltration", Sep. Purif. Technol., 26, 3 (2002). https://doi.org/10.1016/S1383-5866(01)00112-5
  5. H. Huang, K. Schwab, and J. G. Jacangelo, "Pretreatment for low pressure membranes in water treatment: a review", Environ. Sci. Technol., 43, 9 (2009).
  6. Research Institute of Industrial Science & Technology, and Kyoungil Co., "A spiral wound membrane module", Korea Patent 2003-0042730, June 02 (2003).
  7. S. T. Hong and J. Y. Park, "Hybrid water treatment of tubular ceramic MF and photocatalyst loaded polyethersulfone beads : effect of organic matters, adsorption and photo-oxidation at nitrogen back-flushing", Membr. J., 23, 61 (2013).
  8. H. Ahn, W. Jang, T. Tak, and H. Byun, "Preparation of porous polyacrylonitrile nanofibers membrane for the MF application", Membr. J., 23, 112 (2013).
  9. L. S. Chronakis, "Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review", J. Mater. Process. Technol., 167, 283 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.053
  10. N. Daels, S. D. Vrieze, I. Sampers, B. Decostere, P. Westbroek, A. Dumoulin, P. Dejans, K. D. Clerck, and S. W. H. Van Hulle, "Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter", Desalination, 275, 285 (2011). https://doi.org/10.1016/j.desal.2011.03.012
  11. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, "Electronpun nanofibers: solving global issues", Mater. Today, 9, 3 (2006).
  12. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  13. H. Songa, J. Shaoa, Y. He, B. Liu, and X. Zhong, "Natural organic matter removal and flux decline with PEG-$TiO_2$-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci., 405-406, 48 (2012). https://doi.org/10.1016/j.memsci.2012.02.063
  14. http://blog.naver.com/kwaksng/90096294024, March 5 (2015).
  15. http://blog.daum.net/tsc99/18321784, July 21 (2011).
  16. I. H. Won, W. G. Jang, K. Y. Chung, and H. S. Byun, "Preparation of PVdF/GO composite nanifibrous flat membrane and its permeation characteristics in activater sludge", Membr. J., 25, 67 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.67
  17. J. D. Kim, K. W. Park, and C. H. Park, "Application of water treatment with membrane in Seomjin river", Membr. J., 23, 12 (2013).
  18. H. N. Jang, "Advanced water treatment of river water by coagulation-membrane filtration process", Ph. D. Dissertation, Univ. of Kyunghee, Seoul, Korea (2009).
  19. F. Li, W. Meindersma, A. B. de Haan, and T Reith, "Optimization of commercial net spacers in spiral wound membrane modules", J. Membr. Sci., 208, 290 (2002).
  20. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_2$-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalin., 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  21. J. Y. Park and S. H. Lee, "Effect of water-back-flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membr. J., 19, 194 (2009).