DOI QR코드

DOI QR Code

Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa

배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2015.03.24
  • Accepted : 2015.04.10
  • Published : 2015.08.31

Abstract

Drought stress is a crucial environmental factor determining crop survival and productivity. The goal of this study was to clearly identify a new drought stress-tolerance gene in Brassica rapa. From KBGP-24K microarray data with the B. rapa ssp. pekinensis inbred line 'Chiifu' under drought stress treatment, a gene which was named BrDSR (B. rapa Drought Stress Resistance) was chosen among 738 drought-responsive unigenes. BrDSR function has yet to be determined, but its expression was induced over 6-fold by drought. To characterize BrDSR, the gene was isolated from B. rapa inbred line 'CT001' and found to contain a 438-bp open reading frame encoding a 145 amino acid protein. The full-length cDNA of BrDSR was used to construct an over-expression vector, 'pSL100'. Tobacco transformation was then conducted to analyze whether the BrDSR gene can increase drought tolerance in plants. The BrDSR expression level in T1 transgenic tobacco plants selected via PCR and DNA blot analyses was up to 2.6-fold higher than non-transgenic tobacco. Analysis of phenotype clearly showed that BrDSR-expressing tobacco plants exhibited more tolerance than wild type under 10 d drought stress. Taking all of these findings together, we expect that BrDSR functions effectively in plant growth and survival of drought stress conditions.

건조 스트레스는 작물의 생존과 생산성을 결정하는데 매우 중요한 환경요인이다. 본 연구의 목적은 배추에서 신규 건조 스트레스 저항성 유전자를 동정 검정하는 것이다. 건조 스트레스 하에서 생육된 지부('Chiifu') 배추를 이용하여 제작된 KBGP-24K 마이크로어레이 데이터 분석을 통해 738개의 건조 반응 유전자 중 기능은 밝혀져 있지 않지만, 건조 스트레스 하에서 발현량이 6배 이상 크게 증가한 1개의 유전자를 선발하여 BrDSR(B. rapa Drought Stress Resistance)이라 명명하였다. 이의 검정을 위해 내혼계배추('CT001')에서 BrDSR을 동정한 결과 438bp의 오픈리딩프레임과 145개의 아미노산을 가지고 있음을 확인하였고, 동정된 완전장의 cDNA 염기서열은 형질전환용 과발현 vector인 'pSL100' 제작에 이용하였다. BrDSR이 식물체에서 건조 스트레스 저항성을 향상시켜줄 수 있는지 분석하기 위해 담배 형질전환을 수행하였다. PCR과 DNA 블롯 분석으로 선발된 T1 세대 담배 형질전환체들을 대상으로 quantitative real-time RT PCR 분석을 수행한 결과, 형질전환체의 BrDSR 발현량은 비형질 전환체 보다 2.6배까지 증가하였다. 또한 건조처리 10일째 수행한 표현형 분석에서 BrDSR이 발현되는 담배 형질전환체들이 비형질전환체들 보다 우수한 건조 저항성을 보였다. 연구 결과들을 종합하면 BrDSR은 건조 스트레스 하에서 식물의 생장과 생존에 효과적인 저항성 기능을 할 것으로 기대된다.

Keywords

References

  1. Agarwal, P.K., P. Agarwal, M.K. Reddy, and S.K. Sopory. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rpt. 25:1263-1274. https://doi.org/10.1007/s00299-006-0204-8
  2. Ahmed, N.U., J.I. Park, H.J. Jung, M.S. Seo, T.S. Kumar, I.H. Lee, and I.S. Nou. 2012. Identification and characterization of stress resistance related genes of Brassica rapa. Biotechnol. Lett. 34:979-987. https://doi.org/10.1007/s10529-012-0860-4
  3. Candat, A., G. Paszkiewicz, M. Neveu, R. Gautier, D.C. Logan, M.H. Avelange-Macherel, and D. Macherel. 2014. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26:3148-3166. https://doi.org/10.1105/tpc.114.127316
  4. Downton, W.J.S., B.R. Loveys, and W.J.R. Grant. 1988. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol. 108:263-266. https://doi.org/10.1111/j.1469-8137.1988.tb04161.x
  5. Dulai, S., I. Molnar, J. Pronay, A. Csernak, R. Tarnai, and M. Molnar-Lang. 2006. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biol. Szeged 50:11-17.
  6. Fei, H., E. Tsang, and A.J. Cutler. 2007. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics 89:419-428. https://doi.org/10.1016/j.ygeno.2006.11.008
  7. Hara, M., S. Uchida, T. Murata, and H. Watzig. 2014. Efficient purification of cryoprotective dehydrin protein from the radish (Raphanus sativus) taproot. Eur. Food Res. Technol. 239:339-345. https://doi.org/10.1007/s00217-014-2228-6
  8. Hundertmark, M. and D.K. Hincha. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118 https://doi.org/10.1186/1471-2164-9-118
  9. Karimi, M., A. Depicker, and P. Hilson. 2007. Recombinational cloning with plant gateway vectors. Plant Physiol. 145:1144-1154. https://doi.org/10.1104/pp.107.106989
  10. Kauser, R., H. Athar, and M. Ashraf. 2006. Chlorophyll fluorescence:a potential indicator for assessment of water stress tolerance in canola (Brassica napus L.). Pak. J. Bot. 38:1501-1509.
  11. Lee, M.K., H.S. Kim, S.H. Kim, and Y.D. Park. 2004. Analysis of T-DNA integration patterns in transgenic tobacco plants. J. Plant Biol. 47:179-186.
  12. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
  13. Li, J., X.Q. Wang, M.B. Watson, and S.M. Assmann. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300-303. https://doi.org/10.1126/science.287.5451.300
  14. Luhua, S., A. Hegie, N. Suzuki, E. Shulaev, X. Luo, D. Cenariu, V. Ma, S. Kao, J. Lim, M.B. Gunay, T. Oosumi, S.C. Lee, J. Harper, J. Cushman, M. Gollery, T. Girke, J. Bailey-Serres, R.A. Stevenson, J.K. Zhu, and R. Mittler. 2013. Linking genes of unknown function with abiotic stress responses by highthroughput phenotype screening. Physiol. Plant. 148:322-333. https://doi.org/10.1111/ppl.12013
  15. Massacci, A., S.M. Nabiev, L. Pietrosanti, S.K. Nematov, T.N. Chernikova, K. Thor, and J. Leipner. 2008. Response of photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem. 46:189-195. https://doi.org/10.1016/j.plaphy.2007.10.006
  16. Olvera-Carrillo, Y. J.L. Reyes, and A.A. Covarrubias. 2011. Late embryogenesis abundant proteins. Plant Signal. Behav. 6:586-589. https://doi.org/10.4161/psb.6.4.15042
  17. Oono, Y., M. Seki, M. Satou, K. Iida, K. Akiyama, T. Sakurai, M. Fujita, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2006. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct. Integr. Genomics 6:212-234. https://doi.org/10.1007/s10142-005-0014-z
  18. Qin, L.X., Y. Li, D.D. Li, W.L. Xu, Y. Zheng, and X.B. Li. 2014. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses. Plant Mol. Biol. 86:609-625. https://doi.org/10.1007/s11103-014-0251-4
  19. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133:1755-1767. https://doi.org/10.1104/pp.103.025742
  20. Rahbarian, R., R. Khavari-Nejad, A. Ganjeali, A. Bagheri, and F. Najafi. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) Genotypes. Acta Biol. Crac. Ser. Bot. 53:47-56.
  21. RDA (Rural Development Administration). 2007. Culture plan of principal horticultural crops (Suwon, South Korea: RDA).
  22. Seki, M., T. Umezawa, K. Urano, and K. Shinozaki. 2007. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 10:296-302. https://doi.org/10.1016/j.pbi.2007.04.014
  23. Shi, H., T. Ye, Y. Wang, and Z. Chan. 2013. Arabidopsis ALTERED MERISTEM PROGRAM 1 negatively modulates plant responses to abscisic acid and dehydration stress. Plant Physiol. Biochem. 67:209-216. https://doi.org/10.1016/j.plaphy.2013.03.016
  24. Soeda, Y., M.C. Konings, O. Vorst, A.M. van Houwelingen, G.M. Stoopen, C.A. Maliepaard, J. Kodde, R.J. Bino, S.P. Groot, and A.H. van der Geest. 2005. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol. 137:354-368. https://doi.org/10.1104/pp.104.051664
  25. Vaseva, I.I., B.S. Grigorova, L.P. Simova-Stoilova, K.N. Demirevska, and U. Feller. 2010. Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol. 12:698-707. https://doi.org/10.1111/j.1438-8677.2009.00269.x
  26. Velasco-Conde, T., I. Yakovlev, J.P. Majada, I. Aranda, and O. Johnsen. 2012. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes 8:957-973. https://doi.org/10.1007/s11295-012-0476-9
  27. Verbruggen, N. and C. Hermans. 2008. Proline accumulation in plants: a review. Amino Acids 35:753-759. https://doi.org/10.1007/s00726-008-0061-6
  28. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14. https://doi.org/10.1007/s00425-003-1105-5
  29. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
  30. Warde-Farley, D., S.L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C.T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G.D. Bader, and Q. Morris. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. W214-220.
  31. Winter, D., B. Vinegar, H. Nahal, R. Ammar, G.V. Wilson, and N.J. Provart. 2007. An "electronic fluorescent pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718. https://doi.org/10.1371/journal.pone.0000718
  32. Xiao, Q.S., X.K. Zhang, B.B. Xu, Y. Cheng, P.Y Zheng, and G.Y. Lu. 2012. Cloning and expression pattern of AnnBn1 gene in Brassica napus. Chin. J. Oil Crop Sci. 34:123-128.
  33. Xin, Z., A. Mandaokar, J. Chen, R.L. Last, and J. Browse. 2007. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J. 49:786-799. https://doi.org/10.1111/j.1365-313X.2006.02994.x
  34. Yamada, M., H. Morishita, K. Urano, N. Shiozaki, K. Yamaguchi-Shinozaki, K. Shinozaki, and Y. Yoshiba. 2005. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 56:1975-1981. https://doi.org/10.1093/jxb/eri195
  35. Yang, M., Q. Yang, T. Fu, and Y. Zhou. 2011. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rpt. 30:373-388. https://doi.org/10.1007/s00299-010-0940-7
  36. Yang, Y., M. He, Z. Zhu, S. Li, Y. Xu, C. Zhang, S.D. Singer, and Y. Wang. 2012. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 12:140. https://doi.org/10.1186/1471-2229-12-140
  37. Yin, H., S. Li, X. Zhao, Y. Du, and X. Ma. 2006. cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol. Biochem. 44:910-916. https://doi.org/10.1016/j.plaphy.2006.10.002
  38. Yu, J.G., G.H. Lee, S.C. Lee, and Y.D. Park. 2014. Gene expression and phenotypic analyses of transgenic Chinese cabbage overexpressing the cold tolerance gene, BrCSR. Hort. Environ. Biotechnol. 55:415-422. https://doi.org/10.1007/s13580-014-0054-1

Cited by

  1. Overexpression of Nuclear Factor Y subunit StNF-YA7 enhances drought tolerance in potato vol.58, pp.2, 2017, https://doi.org/10.1007/s13580-017-0200-7
  2. 배추의 건조 저항성 유전자, BrDSR의 기능 검정 vol.34, pp.1, 2015, https://doi.org/10.12972/kjhst.20160011