DOI QR코드

DOI QR Code

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method

전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구

  • Kwon, Dong-Jun (Department of Materials Science and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Jin-Yeong (Department of Materials Science and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Science and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Hyung-Ik (Agency for Defense Development) ;
  • Lee, Min-Gyeong (Agency for Defense Development) ;
  • Park, Jong-Kyoo (Agency for Defense Development) ;
  • Park, Joung-Man (Department of Materials Science and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • Received : 2015.06.29
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.

본 연구에서는 탄소 나노복합재료 수지의 분산도를 평가하기 위해 전기저항 측정방법을 활용한 평가 예측 연구를 시도하였다. 탄소 나노복합재료 수지을 탄소섬유 토우에 떨어뜨려 탄소섬유의 배열 변화에 따른 전기저항 변화도를 이용하여 분산도를 평가하였다. 분산도가 균일한 탄소 나노복합재료 수지의 상태는 섬유 토우의 배열을 변화시키더라도, 섬유들 사이에 CNT의 영향으로 전기적 접촉면을 생성시켜 비교적 낮은 전기저항 변화도를 나타낸다. 그러나 불균일한 나노입자 분산상태의 수지는 탄소섬유 토우의 필터링 현상에 나노입자와 에폭시가 분리되었다. 탄소섬유의 전기저항 변화도는 크게 변화되며, 이러한 전기저항 변화도의 크기차이를 이용하여 분산도를 분석할 수 있었다. 나노복합재료 수지 적용 섬유강화 복합재료의 ILSS 측정 결과와 전기저항 측정법을 이용한 분산도 평가 결과간의 상관관계를 비교하였다. 균일한 분산도 상태의 나노복합수지를 이용한 경우가 섬유강화 복합재료화 하였을 경우 우수한 계면 특성을 확인하였다.

Keywords

References

  1. Yu, X., Rajamni, R., Stelson, K.A., and Cui, T., "Carbon Nanotube-based Transparent Thin Film Acoustic Actuators and Sensor," Sensor and Actuators, Vol. 132, 2006, pp. 626-631. https://doi.org/10.1016/j.sna.2006.02.045
  2. Enrique, J.G., Braian, L.W., and Hart, A.J., "Joining Prepreg Composites Interfaces with Aligned Carbon Nanotubes", Composites: Part A, Vol. 39, 2008, pp. 1065-1070. https://doi.org/10.1016/j.compositesa.2008.03.011
  3. Thostenson, E.T., and Chou, T.W., "Carbon Nanotube-based Health Monitoring of Mechanically Fastened Composites Joints", Composites Science and Technology, Vol. 68, 2008, pp. 2557-2561. https://doi.org/10.1016/j.compscitech.2008.05.016
  4. Oh, J, Kozlow, M.E., Kim, B.G., Kim, H.K., Baughman, R.H., and Hwang, Y.H., "Preparation and Electrochemical Characterization of Porous SWNT-PPy Nanocomposite Sheets for Supercapacitor Applications", Synthetic Metals, Vol. 158, 2008, pp. 638-641. https://doi.org/10.1016/j.synthmet.2008.04.007
  5. Kang, G.H., Seong, K.W., Kim, M.S., Kim, I.G., Bang, I.C., Park, H.W., and Park, Y.B., "Thermoelectric Composites Based on Carbon Nanotubes and Micro Glass Bubbles", Composites Research, Vol. 28, 2015, pp. 70-74. https://doi.org/10.7234/composres.2015.28.2.070
  6. Ren, L. and Wang, S., "Toiloring Optical and Electrical Properties of Carbon nanotube Networks for Photovoltaic Applications", Carbon, Vol. 48, 2010, pp. 4397-4402. https://doi.org/10.1016/j.carbon.2010.07.054
  7. Ma, P.C., Tang, B.Z., and Kim, J.K., "Effect of CNT Decoration with Silver Nanoparticles on Electrical conductivity of CNTPolymer Composites", Carbon, Vol. 46, 2008, pp. 1497-1505. https://doi.org/10.1016/j.carbon.2008.06.048
  8. Cho, J., Daniel, I.M., and Dikin, D.A., "Effect of Block Copolymer Dispersant and Nanotube Length on Reinforcement of Carbon/Epoxy Composites" Composites: Part A, Vol. 39, 2008, pp. 1844-1850. https://doi.org/10.1016/j.compositesa.2008.09.006
  9. Multiwalled Carbon Nanotubes and Sepiolite Nanoclays as Flame Retardants for Polylactide and its Natural Fibre Reinforced Composites", Composites: Part A, Vol. 41, 2010, pp. 954-963. https://doi.org/10.1016/j.compositesa.2010.03.004
  10. Wang, Z.J., Kwon, D.J., Park, J.K., Lee, W.I., and Park, J.M., "Microstructure and Ablation Performance of CNT-phenolic Nanocomposites", Composites Research, Vol. 26, 2013, pp. 309-314. https://doi.org/10.7234/composres.2013.26.5.309
  11. Carbon Nanotube Grafted Silica Fibres: Characterising The Interface at The Single Fibre Level", Composites Science and Technology, Vol. 70, 2010, pp. 393-399. https://doi.org/10.1016/j.compscitech.2009.11.014
  12. Jang, J.H., Yi, J.W., Lee, W.O., Lee, H.G., Um, M.K., Kim, J.B., and Byun, J.H., "Dispersion and Property Evaluation of Nanocomposites by Aspect Ratio of MWCNT", Composites Research, Vol. 23, 2010, pp. 58-63.
  13. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., "Dispersion and Functionalization of Carbon Nanotube for Polymer-based Nanocomposites: A Review", Composites: Part A, Vol. 41, 2010, pp. 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  14. Lachman, N. and Wagner, H.D., "Correlation between Interfacial Molecular Structure and Mechanics in CNT/epoxy Nano- Composites", Composites: Part A, Vol. 41, 2010, pp. 1093-1098. https://doi.org/10.1016/j.compositesa.2009.08.023

Cited by

  1. Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites vol.142, 2017, https://doi.org/10.1016/j.compscitech.2017.01.026
  2. A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.223
  3. 탄소나노튜브/아교 접착제를 이용한 돌침대용 목재 샌드위치 복합재의 계면, 열적 및 방수특성 증가 vol.30, pp.4, 2015, https://doi.org/10.7234/composres.2017.30.4.235
  4. 기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구 vol.30, pp.5, 2015, https://doi.org/10.7234/composres.2017.30.5.316