DOI QR코드

DOI QR Code

Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater

  • Ruthiraan, Manimaran (Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia) ;
  • Mubarak, Nabisab Mujawar (Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University) ;
  • Thines, Raj Kogiladas (Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia) ;
  • Abdullah, Ezzat Chan (Malaysia - Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia) ;
  • Sahu, Jaya Narayan (Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei) ;
  • Jayakumar, Natesan Subramanian (Department of Chemical Engineering, Faculty of Engineering, University of Malaya) ;
  • Ganesan, Poobalan (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya)
  • Received : 2014.06.10
  • Accepted : 2014.09.01
  • Published : 2015.03.01

Abstract

We did a comparative study between functionalized multiwall carbon nanotube (FMWCNTs), and magnetic biochar was carried out to determine the most efficient adsorbent to be employed in the $Cd^{2+}$ ion removal. We optimized parameters such as agitation speed, contact time, pH and adsorbent dosage using design expert vrsion 6.08. The statistical analysis reveals that optimized condition for highest removal of $Cd^{2+}$ are at pH 5.0, with dosage 1.0 g, agitation speed and contact time of 100 rpm and 90 minutes, respectively. For the initial concentration of 10mg/l, the removal efficiency of $Cd^{2+}$ using FMWCNTs was 90% and and 82% of magnetic biochar. The maximum $Cd^{2+}$ adsorption capacities of both FMWCNTs and magnetic biochar were calculated: 83.33 mg/g and 62.5 mg/g. The Langmuir and Freundlich constants for FMWCNTs were 0.056 L/mg and 13.613 L/mg, while 0.098 L/mg and 25.204 L/mg for magnetic biochar. The statistical analysis proved that FMWCNTs have better adsorption capacity compared to magnetic biochar and both models obeyed the pseudo-second-order.

Keywords

References

  1. D. Xu, X. Tan, C. Chenand and X. Wang, J. Hazard. Mater., 154, 407 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.059
  2. Y. H. Li, D. Zechao, D. Jun, D. Wu, L. Zhaokun and Z. Yanqiu, Water Res., 39, 605 (2005). https://doi.org/10.1016/j.watres.2004.11.004
  3. G.D. Vukovic, A.D. Marinkovic, M. Colic, M.D. Ristic, R. Aleksic, A. A. P. Grjic and P. S. Uskokovic, Chem. Eng. J., 57, 238 (2010).
  4. S. Yang, J. Li, D. Shao, J. Hu and X. Wang, J. Hazard. Mater., 166, 109 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.003
  5. Y. H. Li, Y. Zhu, Y. Zhao, D. Wu and Z. Luan, Diamond Relat. Mater., 15, 90 (2006). https://doi.org/10.1016/j.diamond.2005.07.004
  6. Y. H. Li, J. Ding, Z. Lun, Z. Di, Y. Zhu, C. Xu, D. Wu and B. Wei, Carbon, 41, 2787 (2003). https://doi.org/10.1016/S0008-6223(03)00392-0
  7. C. Lu and H. Chiu, Chem. Eng. J., 139, 662 (2008).
  8. Y. H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu and B. Wei, Chem. Phys. Lett., 357, 263 (2002). https://doi.org/10.1016/S0009-2614(02)00502-X
  9. H. J. Wang, A. L. Zhou, F. Peng, H. Yu and L. F. Chen, Mater. Sci. Eng., 466, 201 (2007). https://doi.org/10.1016/j.msea.2007.02.097
  10. Y. H. Li, S.W. Wang, Z. L. Luan, J.D. Ding, C. X. Xu and D. Wu, Carbon, 41, 1057 (2003). https://doi.org/10.1016/S0008-6223(02)00440-2
  11. N.M. Mubarak, M. Ruthiraan, J.N. Sahu, E.C. Abdullah, N. S. Jayakumar, N.R. Sajuni and J. Tan, Int. J. Nanosci., 12, 135044-1 (2013).
  12. V. Shanov, Y.-H. Yun and M. J. Schulz, J. Univ. Chem. Technol. Metall., 41(4), 377 (2006).
  13. G.D. Vukovic, A.D. Marinkovic, M. Colic, M.D. Ristic, R. Aleksic, A. A. P. Grjic and P. S. Uskokovic, Chem. Eng. J., 173, 855 (2011). https://doi.org/10.1016/j.cej.2011.08.036
  14. C. Lu and H. Chiu, Chem. Eng. Sci., 61, 1138 (2006). https://doi.org/10.1016/j.ces.2005.08.007
  15. N.A. Kabbashi, I.D. Jamal, Y.Q. Isam, E.S. Mirghami and F.R. Nurhasni, Aust. J. Basic Appl. Sci., 5, 440 (2011).
  16. V.K. Masenelli, E. McRae and P.N. Dupont, Appl. Surf. Sci., 196, 209 (2002). https://doi.org/10.1016/S0169-4332(02)00059-4
  17. P. Kondratyuk and J.T. Yates Jr., Chem. Phys. Lett., 410, 324 (2005). https://doi.org/10.1016/j.cplett.2005.05.073
  18. C.Y. Lu, C. Liu and G. P. Rao, J. Hazard. Mater., 151, 239 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.078
  19. A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki and Y. Achiba, Chem. Phys. Lett., 336, 205 (2001). https://doi.org/10.1016/S0009-2614(01)00111-7
  20. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  21. L. Valentini, C. Cantalini, L. Lozzi, I. Armentano, J.M. Kenny and S. Santucci, Mater. Sci. Eng. C., 23, 523 (2003). https://doi.org/10.1016/S0928-4931(02)00356-9
  22. P. M. Ajayan, Chem. Rev., 99, 1787 (1999). https://doi.org/10.1021/cr970102g
  23. M. Terrones, Annu. Rev. Mater. Res., 33, 419 (2003). https://doi.org/10.1146/annurev.matsci.33.012802.100255
  24. B. L. Dai and A.W. H. Mau, Adv. Mater., 13, 899 (2001). https://doi.org/10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO;2-G
  25. N. M. Mubarak, E. C. Abdullah, N. S. Jayakumar and J. N. Sahu, J. Ind. Eng. Chem., 20, 1197 (2014).
  26. M. Dresselhaus, G. Dresselhaus and P. Avouris, Appl. Phys., 15, 448 (2001).
  27. R. S. Ruoff and D. C. Lorents, Carbon, 33(7), 925 (1995). https://doi.org/10.1016/0008-6223(95)00021-5
  28. M. M. Treacy, T.W. Ebbesen and J. M. Gibson, Nature, 381, 678 (1996). https://doi.org/10.1038/381678a0
  29. A. C. Dillon, K. M. Jones and T.A. Bekkedahl, Nature, 386, 377 (1997). https://doi.org/10.1038/386377a0
  30. A.G. Rinzler, J.H. Hafner and P. Nikolaev, Science, 269, 1550 (1995). https://doi.org/10.1126/science.269.5230.1550
  31. H. J. Dai, J. H. Hafner and A. G. Rinzler, Nature, 384, 147 (1996). https://doi.org/10.1038/384147a0
  32. J. Kong, N. R. Franklin and C. Zhou, Science, 287, 622 (2000). https://doi.org/10.1126/science.287.5453.622
  33. N.M. Mubarak, J.N. Sahu, E.C. Abdullah and N.S. Jayakumar, Sep. Purif. Rev., 43, 338 (2014).
  34. N.M Mubarak, R. F Alicia, E. C. Abdullah, J. N. Sahu, A.B. Ayu Haslija and J. Tan, Adv. Env. Biol., 8, 691 (2014).
  35. Y. H. Li, S.W. Wang, Z. L. Luan, J.D. Ding, C. X. Xu and D. Wu, Carbon, 41, 1057 (2003). https://doi.org/10.1016/S0008-6223(02)00440-2
  36. N. M. Mubarak, R. F. Alicia, E. C. Abdullah, J. N. Sahu, A. B. Ayu Haslija and J. Tan, J. Environ. Chem. Eng., 1, 486 (2013). https://doi.org/10.1016/j.jece.2013.06.011
  37. Z. Gao, T. J. Bandosz, Z. Zhao, M. Han, C. Liang and J. Qiu, Langmuir, 24(20), 11701 (2008). https://doi.org/10.1021/la703638h
  38. N.M. Mubarak, R. K. Thines, N.R. Sajuni, E. C. Abdullah, J. N. Sahu, P. Ganesan and N. S. Jayakumar, Korean J. Chem. Eng., 31, 1582 (2014). https://doi.org/10.1007/s11814-014-0101-8
  39. N. M. Mubarak, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar and P. Ganesan, Diam. Relat. Mater., 48, 52 (2014). https://doi.org/10.1016/j.diamond.2014.07.005
  40. N. M. Mubarak, A. Kundu, J. N. Sahu, E. C. Abdullah and N. S. Jayakumar, Biomss. Bioenergy, 61, 265 (2014). https://doi.org/10.1016/j.biombioe.2013.12.021
  41. N.M. Mubarak, F. Yusof and M. F. Alkhatib, Chem. Eng. J., 168(1), 461 (2011). https://doi.org/10.1016/j.cej.2011.01.045
  42. N.M. Mubarak, S. Daniel, M. Khalid and J. Tan, Int. J. Chem. Environ. Eng., 3(5), 314 (2012).
  43. S. J. Wang, W. X. Hu, D.W. Liao, C. F. Ng and C. Au, Catal. Today, 93, 711 (2005).
  44. J.L. Stevens, A.Y. Huang, H. Peng, I.W. Chiang, V.N. Khabashesku and J. L. Margrave, Nano Lett., 3, 336 (2003).
  45. N.M. Mubarak, J. R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N. S. Jayakumar and P. Ganesan, J. Mol. Catal B., 107, 131 (2014).
  46. H. Peng, L. B. Alemany, J. L. Margrave and V. N. Khabashesku, J. Am. Chem. Soc., 125, 15182 (2003).
  47. Z. Gao, J.B. Teresa, Z. Zhao, M. Han and J. Qiu, J. Hazard. Mater., 167, 357 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.050
  48. Z. Gao, J.B. Teresa, Z. Zhao, M. Han and J. Qiu, J. Hazard. Mater., 167, 357 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.050
  49. C.C. Liu, M.K. Wang and Y.S. Li, Ind. Eng. Chem. Res., 44, 1438 (2005). https://doi.org/10.1021/ie0496380
  50. D. H. K. Reddy, S. M. Lee and K. Seshaiah, Environ. Eng. Res., 17(3), 132 (2012).
  51. M. Nadeem, M. Shabbir, M. A. Abdullah, S. S. Shah and G. McKay, Chem. Eng. J., 148, 365 (2009). https://doi.org/10.1016/j.cej.2008.09.010
  52. X. Huang, N. Y. Gao and Q. L. Zhang, J. Environ. Sci., 19, 1287 (2007). https://doi.org/10.1016/S1001-0742(07)60210-1
  53. K. Nagarethinam and R. Gurusamy, Water Air Soil Pollut., 163, 185 (2005). https://doi.org/10.1007/s11270-005-0277-y
  54. C. S. Vimal, D. M. Indra and M. M. Indra, Chem. Eng. Process., 48, 370 (2009). https://doi.org/10.1016/j.cep.2008.05.001
  55. V.V. Arambula, R.M. Solache and M.T. Olguin, J. Inclusion Phenom. Macrocyclic Chem., 55, 229 (2006). https://doi.org/10.1007/s10847-005-9040-7

Cited by

  1. Comparative Kinetic Study of Removal of Pb2+ Ions and Cr3+ Ions from Waste Water using Carbon Nanotubes Produced using Microwave Heating vol.2, pp.1, 2015, https://doi.org/10.3390/c2010007
  2. Cu2+ ion reduction in wastewater over RDF-derived char vol.18, pp.None, 2016, https://doi.org/10.5714/cl.2016.18.049
  3. Adsorptive removal of atmospheric pollutants over Pyropia tenera chars vol.19, pp.None, 2015, https://doi.org/10.5714/cl.2016.19.079
  4. Recent advances in the catalytic hydrodeoxygenation of bio-oil vol.33, pp.12, 2016, https://doi.org/10.1007/s11814-016-0214-3
  5. Column performance of carbon nanotube packed bed for methylene blue and orange red dye removal from waste water vol.206, pp.None, 2017, https://doi.org/10.1088/1757-899x/206/1/012081
  6. Heavy metal removal from wastewater using various adsorbents: a review vol.7, pp.4, 2017, https://doi.org/10.2166/wrd.2016.104
  7. Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres vol.20, pp.2, 2018, https://doi.org/10.1007/s10163-017-0666-5
  8. Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis vol.16, pp.3, 2015, https://doi.org/10.1007/s10311-018-0724-9
  9. Carbon nanotubes, graphene, and their derivatives for heavy metal removal vol.1, pp.1, 2015, https://doi.org/10.1007/s42114-017-0004-3
  10. Mechanistic insights into sequestration of U(VI) toward magnetic biochar: Batch, XPS and EXAFS techniques vol.70, pp.None, 2015, https://doi.org/10.1016/j.jes.2018.01.013
  11. Adsorptive Removal of Methylene Blue Using Magnetic Biochar Derived from Agricultural Waste Biomass: Equilibrium, Isotherm, Kinetic Study vol.17, pp.5, 2015, https://doi.org/10.1142/s0219581x18500023
  12. Removal of heavy metals and pollutants by membrane adsorption techniques vol.8, pp.1, 2018, https://doi.org/10.1007/s13201-018-0661-6
  13. Review of the use of activated biochar for energy and environmental applications vol.26, pp.None, 2015, https://doi.org/10.5714/cl.2018.26.001
  14. BTPC-Based DES-Functionalized CNTs for As3+ Removal from Water: NARX Neural Network Approach vol.144, pp.8, 2018, https://doi.org/10.1061/(asce)ee.1943-7870.0001412
  15. Synthesis of a novel isatin and ethylenediamine modified resin and effective adsorption behavior towards Orange G vol.9, pp.2, 2015, https://doi.org/10.1039/c8ra07253a
  16. Facile and simple synthesis of triethylenetetramine-modified mesoporous silica adsorbent for removal of Cd(II) vol.36, pp.1, 2015, https://doi.org/10.1007/s11814-018-0169-7
  17. Mechanochemically Synthesised Coal-Based Magnetic Carbon Composites for Removing As(V) and Cd(II) from Aqueous Solutions vol.9, pp.1, 2015, https://doi.org/10.3390/nano9010100
  18. Feedforward Artificial Neural Network-Based Model for Predicting the Removal of Phenolic Compounds from Water by Using Deep Eutectic Solvent-Functionalized CNTs vol.25, pp.7, 2015, https://doi.org/10.3390/molecules25071511
  19. A review: a comparison of different adsorbents for removal of Cr (VI), Cd (II) and Ni (II) vol.44, pp.4, 2015, https://doi.org/10.3906/kim-2002-21
  20. Preparation and Application in Water Treatment of Magnetic Biochar vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.769667
  21. Review and Perspectives for Effective Solutions to Grand Challenges of Energy and Fuels Technologies via Novel Deep Eutectic Solvents vol.35, pp.8, 2021, https://doi.org/10.1021/acs.energyfuels.1c00303
  22. Enhancement of Cd(II) adsorption by rice straw biochar through oxidant and acid modifications vol.28, pp.31, 2021, https://doi.org/10.1007/s11356-021-13742-8