DOI QR코드

DOI QR Code

Differential Role of Central GABA Receptors in Nociception of Orofacial Area in Rats

  • Lee, Ah-Ram (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Lim, Nak-hyung (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Hye-Jin (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Min-Ji (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ju, Jin-Sook (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Park, Min-Kyoung (Department of Dental Hygiene, Kyung-Woon University) ;
  • Lee, Min-Kyung (Department of Dental Hygiene, Dong-Eui University) ;
  • Yang, Kui-Ye (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong-Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University)
  • Received : 2015.08.04
  • Accepted : 2015.08.31
  • Published : 2015.09.30

Abstract

The present study investigated the role of central $GABA_A$ and $GABA_B$ receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a $GABA_A$ receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a $GABA_B$ receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a $GABA_A$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a $GABA_B$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to $GABA_A$ receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the $GABA_A$ receptor, but not the $GABA_B$ receptor, participates in pain processing under normal conditions. Intracisternal administration of $GABA_A$ receptor antagonist, but not $GABA_B$ receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of $GABA_A$ receptor provides new therapeutic targets for the treatment of chronic pain.

Keywords

References

  1. Malcangio M, Bowery NG. GABA and its receptors in the spinal cord. Trends Pharmacol Sci. 1996;17:457-462. https://doi.org/10.1016/S0165-6147(96)01013-9
  2. Reichl S, Augustin M, Zahn PK, Pogatzki-Zahn EM. Peripheral and spinal GABAergic regulation of incisional pain in rats. Pain 2012;153:129-141. doi: 10.1016/j.pain.2011.09.028.
  3. Carlton SM, Hayes ES. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. J Comp Neurol. 1990;300:162-182. https://doi.org/10.1002/cne.903000203
  4. Antal M, Petko M, Polgar E, Heizmann CW, Storm-Mathisen J. Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 1996;73:509-518. https://doi.org/10.1016/0306-4522(96)00063-2
  5. Millhorn DE, Hokfelt T, Seroogy K, Oertel W, Verhofstad AA, Wu JY. Immunohistochemical evidence for colocalization of gamma-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain Res. 1987;410:179-185. https://doi.org/10.1016/S0006-8993(87)80043-4
  6. Chebib M, Johnston GA. The 'ABC' of GABA receptors: a brief review. Clin Exp Pharmacol Physiol. 1999;26:937-940. https://doi.org/10.1046/j.1440-1681.1999.03151.x
  7. Jensen ML, Timmermann DB, Johansen TH, Schousboe A, Varming T, Ahring PK. The beta subunit determines the ion selectivity of the GABAA receptor. J Biol Chem. 2002;277:41438-41447. https://doi.org/10.1074/jbc.M205645200
  8. Johnston GA. GABAA receptor pharmacology. Pharmacol Ther. 1996;69:173-198. https://doi.org/10.1016/0163-7258(95)02043-8
  9. Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem. 2002;2:795-816. https://doi.org/10.2174/1568026023393507
  10. Kerr DI, Ong J. GABAB receptors. Pharmacol Ther. 1995;67:187-246. https://doi.org/10.1016/0163-7258(95)00016-A
  11. Hammond DL, Drower EJ. Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol. 1984;103:121-125. https://doi.org/10.1016/0014-2999(84)90197-3
  12. Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci. 1986;39:1667-1674. https://doi.org/10.1016/0024-3205(86)90164-5
  13. Wilson PR, Yaksh TL. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol. 1978;51:323-330. https://doi.org/10.1016/0014-2999(78)90423-5
  14. Yaksh TL, Reddy SV. Studies in the primate on the analgetic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen. Anesthesiology 1981;54:451-467. https://doi.org/10.1097/00000542-198106000-00004
  15. Lin Q, Peng YB, Willis WD. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol. 1996;75:109-123. https://doi.org/10.1152/jn.1996.75.1.109
  16. Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD. Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci. 1984;4:732-740. https://doi.org/10.1523/JNEUROSCI.04-03-00732.1984
  17. Aanonsen LM, Wilcox GL. Muscimol, gamma-aminobutyric acidA receptors and excitatory amino acids in the mouse spinal cord. J Pharmacol Exp Ther. 1989;248:1034-1038.
  18. Hwang JH, Yaksh TL. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997;70:15-22. https://doi.org/10.1016/S0304-3959(96)03249-6
  19. Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002;96:1161-1167. https://doi.org/10.1097/00000542-200205000-00020
  20. Rode F, Jensen DG, Blackburn-Munro G, Bjerrum OJ. Centrally-mediated antinociceptive actions of GABA(A) receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur J Pharmacol. 2005;516:131-138. https://doi.org/10.1016/j.ejphar.2005.04.034
  21. Reeve AJ, Dickenson AH, Kerr NC. Spinal effects of bicuculline: modulation of an allodynia-like state by an A1-receptor agonist, morphine, and an NMDA-receptor antagonist. J Neurophysiol. 1998;79:1494-1507. https://doi.org/10.1152/jn.1998.79.3.1494
  22. Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;72:169-179. https://doi.org/10.1152/jn.1994.72.1.169
  23. Hao JX, Xu XJ, Wiesenfeld-Hallin Z. Intrathecal gammaaminobutyric acidB (GABAB) receptor antagonist CGP 35348 induces hypersensitivity to mechanical stimuli in the rat. Neurosci Lett. 1994;182:299-302. https://doi.org/10.1016/0304-3940(94)90821-4
  24. Sokal DM, Chapman V. Spinal GABA(B)-receptor antagonism increases nociceptive transmission in vivo. Neuroreport 2001;12:3247-3250. https://doi.org/10.1097/00001756-200110290-00021
  25. Park YH. Central mechanisms of mechanical allodynia produced by subcutaneous injection of IL-$1{\beta}$ [dissertation]. Daegu: Kyungpook National University. 2012.
  26. Almond JR, Westrum LE, Henry MA. Post-embedding immunogold labeling of gamma-aminobutyric acid in lamina II of the spinal trigeminal subnucleus pars caudalis: I. A qualitative study. Synapse 1996;24:39-47. https://doi.org/10.1002/(SICI)1098-2396(199609)24:1<39::AID-SYN5>3.0.CO;2-H
  27. Ginestal E, Matute C. Gamma-aminobutyric acidimmunoreactive neurons in the rat trigeminal nuclei. Histochemistry 1993;99:49-55. https://doi.org/10.1007/BF00268020
  28. Ahn DK, Choi HS, Yeo SP, Woo YW, Lee MK, Yang GY, Jeon HJ, Park JS, Mokha SS. Blockade of central cyclooxygenase (COX) pathways enhances the cannabinoid-induced antinociceptive effects on inflammatory temporomandibular joint (TMJ) nociception. Pain 2007;132:23-32. https://doi.org/10.1016/j.pain.2007.01.015
  29. Lee MK, Choi BY, Yang GY, Jeon HJ, Kyung HM, Kwon OW, Park HS, Bae YC, Mokha SS, Ahn DK. Low doses of cannabinoids enhance the antinociceptive effects of intracisternally administered mGluRs groups II and III agonists in formalin-induced TMJ nociception in rats. Pain 2008;139:367-375. doi: 10.1016/j.pain.2008.05.005.
  30. Wang XM, Zhang ZJ, Bains R, Mokha SS. Effect of antisense knock-down of alpha(2a)- and alpha(2c)-adrenoceptors on the antinociceptive action of clonidine on trigeminal nociception in the rat. Pain 2002;98:27-35. https://doi.org/10.1016/S0304-3959(01)00464-X
  31. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav. 1976;17:1031-1036. https://doi.org/10.1016/0031-9384(76)90029-9
  32. Park MK, Song HC, Yang KY, Ju JS, Ahn DK. Participation of peripheral P2X receptors in orofacial inflammatory nociception in rats. Int J Oral Biol. 2011;36:143-148.
  33. Han SR, Yeo SP, Lee MK, Bae YC, Ahn DK. Early dexamethasone relieves trigeminal neuropathic pain. J Dent Res. 2010;89:915-920. doi: 10.1177/0022034510374056.
  34. Won KA, Kim MJ, Yang KY, Park JS, Lee MK, Park MK, Bae YC, Ahn DK. The glial-neuronal GRK2 pathway participates in the development of trigeminal neuropathic pain in rats. J Pain 2014;15:250-261. doi: 10.1016/j.jpain.2013.10.013.
  35. Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain 2009;144:84-94. doi: 10.1016/j.pain.2009.03.016.
  36. Han SR, Yang GY, Ahn MH, Kim MJ, Ju JS, Bae YC, Ahn DK. Blockade of microglial activation reduces mechanical allodynia in rats with compression of the trigeminal ganglion. Prog Neuropsychopharmacol Biol Psychiatry 2012;36:52-59. doi: 10.1016/j.pnpbp.2011.10.007.
  37. Jeon HJ, Han SR, Park MK, Yang KY, Bae YC, Ahn DK. A novel trigeminal neuropathic pain model: compression of the trigeminal nerve root produces prolonged nociception in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012;38:149-158. doi: 10.1016/j.pnpbp.2012.03.002.
  38. Kim MJ, Lee SY, Yang KY, Nam SH, Kim HJ, Kim YJ, Bae YC, Ahn DK. Differential regulation of peripheral IL-$1{\beta}$ -induced mechanical allodynia and thermal hyperalgesia in rats. Pain 2014;155:723-732. doi: 10.1016/j.pain.2013.12.030.
  39. Jung CY, Choi HS, Ju JS, Park HS, Kwon TG, Bae YC, Ahn DK. Central metabotropic glutamate receptors differentially participate in interleukin-1beta-induced mechanical allodynia in the orofacial area of conscious rats. J Pain 2006;7:747-756. https://doi.org/10.1016/j.jpain.2006.03.007
  40. Yang CS, Jung CY, Ju JS, Lee MK, Ahn DK. Intracisternal administration of mitogen-activated protein kinase inhibitors reduced IL-1beta-induced mirror-image mechanical allodynia in the orofacial area of rats. Neurosci Lett. 2005;387:32-37. https://doi.org/10.1016/j.neulet.2005.07.019
  41. Ishikawa T, Marsala M, Sakabe T, Yaksh TL. Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABA(A) receptor antagonist. Neuroscience 2000;95:781-786.
  42. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989;37:111-123. https://doi.org/10.1016/0304-3959(89)90160-7
  43. Vaught JL, Pelley K, Costa LG, Setler P, Enna SJ. A comparison of the antinociceptive responses to the GABAreceptor agonists THIP and baclofen. Neuropharmacology 1985;24:211-216. https://doi.org/10.1016/0028-3908(85)90076-0
  44. Castro-Lopes JM, Tavares I, Tolle TR, Coito A, Coimbra A. Increase in GABAergic Cells and GABA Levels in the Spinal Cord in Unilateral Inflammation of the Hindlimb in the Rat. Eur J Neurosci. 1992;4:296-301. https://doi.org/10.1111/j.1460-9568.1992.tb00877.x
  45. Castro-Lopes JM, Tavares I, Tolle TR, Coimbra A. Carrageenan-induced inflammation of the hind foot provokes a rise of GABA-immunoreactive cells in the rat spinal cord that is prevented by peripheral neurectomy or neonatal capsaicin treatment. Pain 1994;56:193-201. https://doi.org/10.1016/0304-3959(94)90094-9
  46. Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol. 1994;42:489-537. https://doi.org/10.1016/0301-0082(94)90049-3
  47. Lauf PK, Adragna NC. K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem. 2000;10:341-354. https://doi.org/10.1159/000016357
  48. Park JH, Saier MH Jr. Phylogenetic, structural and functional characteristics of the Na-K-Cl cotransporter family. J Membr Biol. 1996;149:161-168. https://doi.org/10.1007/s002329900016
  49. Price TJ, Hargreaves KM, Cervero F. Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res. 2006;1112:146-158. https://doi.org/10.1016/j.brainres.2006.07.012
  50. Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cationchloride cotransporters and neuronal function. Neuron 2009;61:820-838. doi: 10.1016/j.neuron.2009.03.003.
  51. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4:490-503. doi: 10.1038/ncpneuro0883.
  52. Morales-Aza BM, Chillingworth NL, Payne JA, Donaldson LF. Inflammation alters cation chloride cotransporter expression in sensory neurons. Neurobiol Dis. 2004;17:62-69. https://doi.org/10.1016/j.nbd.2004.05.010
  53. Asiedu MN, Mejia G, Ossipov MK, Malan TP, Kaila K, Price TJ. Modulation of spinal GABAergic analgesia by inhibition of chloride extrusion capacity in mice. J Pain 2012;13:546-554. doi: 10.1016/j.jpain.2012.03.002.
  54. CCoull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sík A, De Koninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003;424:938-942. https://doi.org/10.1038/nature01868
  55. De Koninck Y. Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol. 2007;7:93-99. https://doi.org/10.1016/j.coph.2006.11.005
  56. Hasbargen T, Ahmed MM, Miranpuri G, Li L, Kahle KT, Resnick D, Sun D. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci. 2010;1198:168-172. doi: 10.1111/j.1749-6632.2010.05462.x.