DOI QR코드

DOI QR Code

The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc)

디메틸아세트아미드(DMAc)의 연소특성치의 측정 및 예측

  • Ha, Dong-Myeong (Department of Occupational Health and Safety Engineering, Semyung University)
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2015.03.16
  • Accepted : 2015.05.19
  • Published : 2015.10.01

Abstract

The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of dimethylacetamide (DMAc) being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of DMAc was experimented. And, the lower explosion limit of DMAc was calculated by using the lower flash point obtained in the experiment. The flash points of DMAc by using the Setaflash and Pensky-Martens closed-cup testers measured $61^{\circ}C$ and $65^{\circ}C$, respectively. The flash points of DMAc by using the Tag and Cleveland automatic open cup testers are measured $68^{\circ}C$ and $71^{\circ}C$. The AIT of DMAc by ASTM 659E tester was measured as $347^{\circ}C$. The lower explosion limit by the measured flash point $61^{\circ}C$ was calculated as 1.52 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

공정의 안전을 위해서 취급물질의 정확한 연소특성치의 사용은 매우 중요하다. 화학산업에서 다양하게 사용되고 있는 디메틸아세트아미드의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다, Setaflash 밀폐식은 $61^{\circ}C$, Pensky-Martens 밀폐식에서는 $65^{\circ}C$ 그리고 Tag 개방식에서는 $68^{\circ}C$, Cleveland 자동 개방식에서는 $71^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 최소자연발화온도는 $347^{\circ}C$로 측정되었다. 측정된 하부인화점 $61^{\circ}C$에 의한 폭발하한계는 1.52 vol%로 계산되었다. 폭발한계는 측정된 인화점이나 문헌에 제시된 인화점을 이용하여 예측가능함을 알 수 있었다.

Keywords

References

  1. Kim, J. H., Yang. J. M., Yong, J. W., Ko, B. S., Yoo, B. T. and Ko, J. W., "Development of Hazard Work Mapping Methodology Based on Layout of Workplace Handling the Accident Preparedness Substances," Korean Chem. Eng. Res., 52(6), 736-742(2014). https://doi.org/10.9713/kcer.2014.52.6.736
  2. Crowl, D. A. and Louvar, J. F., Chemical Process Safety : Fundamentals with application, 3rd ed., Prentice Hall(2011).
  3. Lees, F.P., Loss Prevention in the Process Industries, Vol. 2, 2nd ed., Butterworth-Heinemann(1996).
  4. KOSHA, http://msds.kosha.or.kr/kcic/msdsdetail.do.
  5. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, NFPA(1991).
  6. Lenga, R. E. and Votoupal, K. L., The Sigma Aldrich Library of Regulatory and Safety Data, Volume I, Sigma Chemical Company and Aldrich Chemical Company Inc.(1993).
  7. Lewis, R. J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc.(2004).
  8. Smallwood, I. M., Handbook of Organic Solvent Properties, John Wiley & Son, Inc.(1996).
  9. http://www.mpbio.com/product.php?pid=02300072.
  10. http://www.taminco.com/doc_download/.
  11. http://chemicalengineeringnow.com/PhysicalandChemcialData.aspx.
  12. Stephenson, S. M., Flash Points of Organic and Organometallic Compounds, Elsevier(1987).
  13. Ha, D. M.,"The Measurement of Fire and Explosion Properties of n-Pentadecane," J. Korean Society of Safety, 28(4), 53-57(2013). https://doi.org/10.14346/JKOSOS.2013.28.4.053
  14. Cho, S. J., Shin, J. S., Choi, S. H., Lee, E. S. and Park, S. J., "Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System," Korean Chem. Eng. Res., 52(3), 307-313(2014). https://doi.org/10.9713/kcer.2014.52.3.307

Cited by

  1. Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture vol.25, pp.1, 2016, https://doi.org/10.5855/ENERGY.2015.25.1.048
  2. MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.190