DOI QR코드

DOI QR Code

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang'

고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향

  • Son, In-Chang (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Song, Eun Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Oh, Soonja (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Seo, Hyeongho (Reaserch Policy Planning Division, RDA) ;
  • Moon, Young Eel (Citrus Research Institute, National Institute of Horticultural and Herbal Science, RDA) ;
  • Yang, Jinyoung (Crop System and Global Change Lab, Agricultural Research Service, USDA)
  • 손인창 (국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (국립원예특작과학원 온난화대응농업연구소) ;
  • 오순자 (국립원예특작과학원 온난화대응농업연구소) ;
  • 서형호 (농촌진흥청 연구정책과) ;
  • 문영일 (국립원예특작과학원 감귤시험장) ;
  • 양진영 (미국농무성 농업연구국)
  • Received : 2015.09.14
  • Accepted : 2015.09.29
  • Published : 2015.09.30

Abstract

Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.

본 연구는 미래 기후변화 시나리오에 근거한 5가지 온도처리가 '춘광' 배추의 생육, 품질 및 생리반응에 미치는 영향을 구명하기 위해 수행하였다. 처리구는 $-2.0^{\circ}C$(I), 평년온도(II), $+2.0^{\circ}C$(III), $+4.0^{\circ}C$(IV), $+6.0^{\circ}C$(V) 등 5 수준으로 설정하였다. 생체중, 엽수 및 엽면적의 경시적 변화를 조사한 결과, 결구 이전에는 고온처리구인 IV, V처리구가 높은 수치를 보였으나, 결구기 이후 현저히 감소하여 정식 후 70일에는 고온처리구일수록 감소하는 경향을 보였다. 배추 내부의 무름 증상은 V처리구가 85.7%로 가장 높았으며, IV (64.3%), III (28.6%), II (14.3%), I (7.1%)순으로 감소하였다. 광합성률을 측정한 결과, 정식 후 30일전에는 III, IV, V처리구의 광합성률이 높은 수치를 보였으나, 생육후반에는 크게 감소한 반면, I, II처리구는 크게 증산량과 기공전도도 역시 비슷한 경향을 보였다. 정식 후 50일의 엽록소 형광반응을 비교한 결과, Fv/Fm은 I처리구가 8.04로 처리구 중 가장 높았으며 IV처리구가 7.15로 가장 낮았다.

Keywords

References

  1. Ahn, S. B., and B. S. Vergara, 1969: Studies on responses of the rice plant to photoperiod. III. Responses of Korean varieties. Korean Journal of Crop Science 5, 45-49.
  2. Carmo-Silva, A. E. and M. E. Salvucci, 2012: The temperature response of $CO_{2}$ assimilation, photochemical activities and rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. Planta 236, 1433-1445. https://doi.org/10.1007/s00425-012-1691-1
  3. Choi, S. Y., and K. S. Lee, 1996: Effect of soil water potential on stomatal conductance and photosynthesis of wasabia japonica matsum. The Korean Society of Medical Crop Science 4(4), 288-293.
  4. Chung, E. K., X. Z. Zhang, Y. R. Yeoung, and B. S. Kim, 2003: Screening of effective control agents against bacterial soft rot on Chinese cabbage in alpine area. The Korean Journal of Pesticide Science 7, 32-37.
  5. Eamus, D., D. T. Taylor, C. M. O. Macinnis-Ng, S. Shanahan, and L. De Silva, 2008: Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. Plant Cell and Environment 31, 269-277. https://doi.org/10.1111/j.1365-3040.2007.01771.x
  6. Eum, H. L., B. S. Kim, Y. J. Yang, and S. J. Hong, 2013. Quality evaluation and optimization of storage temperature with eight cultivars of kimchi cabbage produced in summer at highland areas. Korean Journal of Horticultural Science & Technology 31(2), 211-218. https://doi.org/10.7235/hort.2013.12170
  7. Weiguo F., P. Li, and Y. Wu, 2012: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae 135, 45-51. https://doi.org/10.1016/j.scienta.2011.12.004
  8. Heide, O. M., 1970: Seed-stalk formation and flowering in cabbage. I. Day-length, temperature, and time relationships. Meldinger fra Norges Landbrukshogskole 49, 1-21.
  9. Hosoi, N., and N. Tamagata, 1973: The study of interaction of environmental factors for rice plant heading. Japanese Journal of Breeding 23, 110-111.
  10. Hwang, S. U., J. Y. Lee, H. S. Chang, Y. H. Park, Y. S. Gil, and M. H. Park, 2003: High temperature stress of summer Chinese cabbage in alpine region. Korean Society of Soil Science and Fertilizer 36(6), 417-422.
  11. Intergovernmental Panel on Climate Change (IPCC), 2007: Climate change 2007 (The physical science basis), Summary for policymakers, technical summary and frequently asked questions. WMO & UNEP, 142pp.
  12. Kang, H. J., J. S. Lee, K. R. Ryu, and J. T. Lee, 2002: Chinese cabbage cultivation. RDA. Korea.
  13. Kirschbaum, M. U. F., 2000: Forest growth and species distributions in a changing climate. Tree Physiology 20, 309-322. https://doi.org/10.1093/treephys/20.5-6.309
  14. Kirschbaum, M. U. F., 2004: Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biology 6, 242-253. https://doi.org/10.1055/s-2004-820883
  15. Lee, S. G., J. H. Moon, Y. A. Jang, W. M. Lee, I. H. Cho, S. Y. Kim, and K. D. Ko, 2009: Photosynthetic characteristics and cellular tissue of Chinese cabbage are affected by temperature and $CO_{2}$ concentration. Journal of Bio-Environment Control 18(2), 148-152.
  16. Lichtenthaler, H. K., and S. Burkart, 1999: Photosynthesis and high light stress. Bulgarian Journal of Plant Physiology 25, 3-16.
  17. Lim, M. S., K. Y. Shin, J. G. Woo, Y. S. Kwon, S. W. Jang, W. B. Kim, J. N. Lee, J. T. Lee, H. J. Kwon, J. T. Seo, J. H. Ahn, Y. G. Kang, Y. I. Ham, M. Kwon, and K. R. Ryu, 2000: Vegetable cultivation technique in highland area. Kwahakwonyae press, Seoul, 52-26.
  18. Moe, R., and G. Guttormsen, 1985: Effect of photoperiod and temperature on bolting in Chinese cabbage. Scientia Horticulturae 27, 49-54. https://doi.org/10.1016/0304-4238(85)90054-8
  19. Mott, K. A., and D. F. Parkhurst, 1991: Stomatal responses to humidity in air and helox. Plant Cell and Environment 14, 509-515. https://doi.org/10.1111/j.1365-3040.1991.tb01521.x
  20. Oh, S., K. H. Moon, I. C. Son, E. Y. Song, Y. E. Moon, and S. C. Koh, 2014: Growth, photosysthesis and chlorophyll fluorescence of chinese cabbage in response to high temperature. Korean Journal of Horticultural Science & Technology 32(3), 318-329. https://doi.org/10.7235/hort.2014.13174
  21. Opena, R. T., C. G. Kuo, and J. Y. Yoon, 1988: Breeding and seed production of Chinese cabbage in the tropics and subtropics. Technical Bulletin 17. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan
  22. Park, S. H., J. S. Lee, M, H. Seo, and J. S. Lee, 2002: Radish Cultivation, RDA, Suwon, 39-40.

Cited by

  1. Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-1163-9
  2. Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.298
  3. A Thermal Time - Based Phenology Estimation in Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.333
  4. Optimizing growth conditions for glucosinolate production in Chinese cabbage vol.59, pp.5, 2018, https://doi.org/10.1007/s13580-018-0084-1