DOI QR코드

DOI QR Code

Fatigue Crack Propagation Behavior of Fe24Mn Steel Weld at 298 and 110 K

  • Jeong, Daeho (Department of Materials Science and Engineering, ReCAPT, Gyeongsang National University) ;
  • Lee, Soongi (Plate Research Group, Technical Research Laboratory, POSCO) ;
  • Seo, Insik (Plate Research Group, Technical Research Laboratory, POSCO) ;
  • Yoo, Jangyong (Plate Research Group, Technical Research Laboratory, POSCO) ;
  • Kim, Sangshik (Department of Materials Science and Engineering, ReCAPT, Gyeongsang National University)
  • Received : 2014.03.21
  • Accepted : 2014.04.24
  • Published : 2015.01.20

Abstract

The fatigue crack propagation (FCP) tests were conducted on Fe24Mn steel in the region of base metal (BM), weld metal (WM) and fusion line (FL) at 298 and 110 K. The FCP rates of Fe24Mn specimens in the region of BM, WM and FL were greatly decreased, while no notable difference in the fracture mode was observed, with decreasing temperature from 298 to 110 K. The FCP rates of Fe24Mn WM and FL specimens were slightly lower than those of BM specimen at both room and cryogenic temperatures. The SEM fractographic analyses suggested that each specimen showed the transgranular facets at both temperatures in low and intermediate ${\Delta}K$ regimes. However, the morphological details varied depending on the region of weld and testing temperature. Relatively large sized facets were observed for the WM specimen with the columnar grain boundary playing the same role as the grain boundary in the BM and the FL specimens in the near-threshold ${\Delta}K$ regime. The FCP behavior of Fe24Mn steel in the region of BM, WM and FL is discussed at 298 and 110 K based on the fractographic and micrographic observation.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), KIGAM

References

  1. J. Billingham, J. V. Sharp, J. Spurrier, and P. J. Kilgallon, Research Report 105, pp.1-111, Health and Safety Executive (HAE) Books, Cranfield (2003).
  2. NORSOK Standard M-001, Rev. 3, pp.7-23, Norway (2002).
  3. J. K. Kwon, D. H. Ahn, D. H. Jeong, Y. J. Kim, N. S. Woo, and S. S. Kim, Korean J. Met. Mater. 52, 757 (2014). https://doi.org/10.3365/KJMM.2014.52.10.757
  4. D. T. Read and R. P. Reed, Cryogenics, 21, 415 (1981). https://doi.org/10.1016/0011-2275(81)90175-2
  5. D. H. Jeong, S. G. Lee, W. K. Jang, J. K. Choi, Y. J. Kim, and S. S. Kim, Metall. Trans. A. 44A, 4601 (2013).
  6. K. S. Bang, S. H. Pak, and S. K. Ahn, Met. Mater. Int. 19, 1267 (2013). https://doi.org/10.1007/s12540-013-6019-6
  7. Z. Mei and J. W. Morris, Jr., Metall. Trans. A. 21A, 3137 (1990).
  8. R. L. Tobler and R. P. Reed, J. Test. Eval. 12, 364 (1984). https://doi.org/10.1520/JTE10741J
  9. J. K. Kwon, H. Y. Lee, Y. J. Kim, and S. S. Kim, Korean J. Met. Mater. 49, 774 (2011).
  10. J. W. Morris, Jr., J. W. Chan, and Z. Mei, Fourteenth International Cryogenic Engineering Conference and International Cryogenic Materials Conference, p.1, Keiv, Ukraine (1992).
  11. Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014). https://doi.org/10.1016/j.corsci.2013.09.014
  12. N. B. Fredj and H. Sidhom, Cryogenics, 46, 439 (2006). https://doi.org/10.1016/j.cryogenics.2006.01.015
  13. D. Y. Ryoo, S. C. Lee, Y. D. Lee, and J. Y. Kang, Met. Mater. Int. 7, 1381 (2001).
  14. R. Ogawa and J. W. Morris, Jr., Fatigue at Low Temperatures, ASTM STP 857, p.47, R.I. Stephens, ed., American Society for Testing and Materials, Philadelphia (1985).
  15. Q. Dai, R. Yang, and K. Chen, Materials Characterization, 42, 21 (1999). https://doi.org/10.1016/S1044-5803(98)00043-6
  16. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Trans. A. 45A, 654 (2014).
  17. T. Yokobori, I. Maekawa, Y. Tanabe, Z. Jin, and S. I. Nishida, Fatigue at Low Temperatures, ASTM STP 857, p.121, R. I. Stephens, ed., American Society for Testing and Materials, Philadelphia (1985).
  18. S. S. Kim, J. K. Kwon, Y. J. Kim, W. K. Jang, S. G. Lee, and J. K. Choi, Met. Mater. Int. 19, 1 (2013). https://doi.org/10.1007/s12540-013-1001-x
  19. M. A. N. Beltrao, E. M. Castrodeza, and F. L. Bastian, Fatigue Fract. Engng. Mater. Struct. 34, 321 (2010).
  20. L. W. Tsay, T. S. Chern, C. Y. Gau, and J. R. Yang, Int. J. Fatigue. 21, 857 (1999). https://doi.org/10.1016/S0142-1123(99)00021-3
  21. E. A. Starke and J. C. Williams, in Fracture Mechanics, Perspectives and Directions, ASTM STP 1020, p.184, R. P. Wei and R. P. Gangloff, eds., American Society for Testing and Materials, Philadelphia (1989).
  22. G. Deqing, Int. J. Fatigue. 18, 221 (1996). https://doi.org/10.1016/0142-1123(96)00004-7
  23. S. Suresh, Metall. Trans. A. 14A, 2375 (1983).
  24. S. Suresh, Metall. Trans. A. 16A, 249 (1985).
  25. T. Ninh Nguyen and M. A. Wahab, J. Mater. Process. Technol. 77, 201 (1998). https://doi.org/10.1016/S0924-0136(97)00418-4
  26. R. Galatolo and A. Lanciotti, Int. J. Fatigue. 19-1, 43 (1997). https://doi.org/10.1016/S0142-1123(96)00046-1
  27. C. D. Donne, G Biallas, T. Ghidini, and G. Raimbeaux, Proceedings of the second international symposium on friction stir welding, p.1, Gothenburg, Sweden (2000).
  28. L. Baotong and Z. Xiulin, Mater. Sci. Eng. A148, 179 (1991).
  29. K. A. Esaklul, W. Yu, and W. W. Gerberich, Fatigue at Low Temperatures, ASTM STP 857, p.63, R. I. Stephens, ed., American Society for Testing and Materials, Philadelphia (1985).
  30. L. Lawson, E. Y. Chen, and M. Meshii, Int. J. Fatigue. 21, S15 (1999). https://doi.org/10.1016/S0142-1123(99)00053-5
  31. P. K. Liaw and W. A. Logsdon, Eng. Fract. Mech. 22, 585 (1985). https://doi.org/10.1016/0013-7944(85)90122-5
  32. W. Yu, K. Esaklul, and W. W. Gerberich, Metall. Trans. A. 15A, 889 (1984).
  33. R. L. Tobler and Y. W. Cheng, Fatigue at Low Temperatures, ASTM STP 857, 3 (1985).
  34. ASTM Standard E647, Standard test method for measurement of fatigue crack growth rates, Annual book of ASTM standards, 03.01 (2002).
  35. H. T. Kang, Y. L. Lee, and X. J. Sun, Mater. Sci. Eng. A497, 37 (2008).
  36. FITNET final technical report MK7, Annex C, pp.6-9 (2006).
  37. E. Hornbogen and K. H. Zum Gahr, Acta Metallurgica, 24, 581 (1976). https://doi.org/10.1016/0001-6160(76)90104-8
  38. S. B. Chakrabortty, Fatigue in Engineering Materials and Structures. 2, 331 (1979). https://doi.org/10.1111/j.1460-2695.1979.tb01091.x
  39. S. Majumdar and J. D. Morrow, in Fracture Toughness and Slow-Stable Cracking, (Eighth Conference), p.159, ASTM STP 559, American Society for Testing and Materials, Philadelphia (1974).
  40. J. L. Robinson and C. J. Beevers, Metall. Science. J. 7, 153 (1973). https://doi.org/10.1179/030634573790445550
  41. J. Lindigkeit, G. Terlinde, A. Gysler, and G. Lutjering, Acta Metallurgica, 27, 1717 (1979). https://doi.org/10.1016/0001-6160(79)90086-5
  42. P. Mohseni, J. K. Solberg, M. Karlsen, O. M. Akselsen, and E. Ostby, Deformation of Crystallographic Facet Orientations on Fracture Surfaces of an Arctic Steel by Using EBSD Proceedings of the twenty-second international offshore and polar engineering conference, Rhode, Greece, June, 305 (2012).

Cited by

  1. 변형률 속도에 따른 Fe-24.5Mn-4Cr-0.45C 합금의 인장 특성과 동적 변형시효 vol.26, pp.5, 2015, https://doi.org/10.3740/mrsk.2016.26.5.281
  2. Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys vol.23, pp.4, 2017, https://doi.org/10.1007/s12540-017-6730-9
  3. High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy vol.12, pp.None, 2015, https://doi.org/10.1186/s40712-016-0069-8
  4. Reviews on factors affecting fatigue behavior of high-Mn steels vol.24, pp.1, 2015, https://doi.org/10.1007/s12540-017-7459-1
  5. Fatigue Crack Growth Testing and Evaluation for Aluminum Alloys at Temperatures of 25°C and −70°C vol.46, pp.4, 2018, https://doi.org/10.1520/jte20160592
  6. High-Cycle Fatigue Behavior of High-Mn Steel/304L Stainless Steel Welds at Room and Cryogenic Temperatures vol.50, pp.3, 2015, https://doi.org/10.1007/s11661-018-5095-0
  7. Fatigue strength of fillet‐welded joints at subzero temperatures vol.43, pp.2, 2015, https://doi.org/10.1111/ffe.13163
  8. Microstructure and Mechanical Properties of a Hot-rolled High Manganese TWIP Steel Containing 0.3%V vol.60, pp.6, 2015, https://doi.org/10.2355/isijinternational.isijint-2019-578
  9. Extension of the strain energy density method for fatigue assessment of welded joints to sub‐zero temperatures vol.43, pp.12, 2015, https://doi.org/10.1111/ffe.13308
  10. Review of methods for the high-cycle fatigue strength assessment of steel structures subjected to sub-zero temperature vol.82, pp.None, 2015, https://doi.org/10.1016/j.marstruc.2021.103153