DOI QR코드

DOI QR Code

Determination of the Deformation Mechanism of Fe-Mn Alloys

  • Jo, Minho (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Koo, Yang Mo (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Kwon, Se Kyun (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology)
  • Received : 2014.06.30
  • Accepted : 2014.09.23
  • Published : 2015.03.20

Abstract

The energy parameters of planar defects are decisive for understanding the deformation mechanisms of metals. The stacking fault energy has been regarded as a key parameter to determine the activation of the deformation mechanisms of the face-centered cubic metals and alloys. However, it is still under a long debate why the stacking fault energy can be treated to be such an exclusive parameter among the general planar fault energies. We have employed molecular dynamics method to examine the effects of Mn alloying on the deformation behavior of austenitic Fe-Mn systems. The energies of stable and unstable states are calculated by sliding the (111) plane and are analyzed in two different schemes, stacking fault energy and energy barriers, which leads to a contradiction between them. We show that a linear relationship can be identified among the energy barriers. This finding is used to identify the activated deformation mechanism. A new parameter is also suggested to characterize the material deformation.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy of Korea

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity. 16, 1391 (2000). https://doi.org/10.1016/S0749-6419(00)00015-2
  2. J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995). https://doi.org/10.1016/0079-6425(94)00007-7
  3. S. Cotes, M. Sade, and A. F. Guillermet, Metall. Mater. Trans. A 26, 1957 (1995). https://doi.org/10.1007/BF02670667
  4. S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004). https://doi.org/10.1016/j.actamat.2003.12.040
  5. J. S. Jeong, Y. M. Koo, I. K. Jeong, S. K. Kim, and S. K. Kwon, Mater. Sci. Eng. A 530, 128 (2011). https://doi.org/10.1016/j.msea.2011.09.060
  6. J. S. Jeong, W. Woo, K. H. Oh, S. K. Kwon, and Y. M. Koo, Acta Mater. 60, 2290 (2012). https://doi.org/10.1016/j.actamat.2011.12.043
  7. L. Remy and A. Pineau, Mater. Sci. Eng. 26, 123 (1976). https://doi.org/10.1016/0025-5416(76)90234-2
  8. B.-H. Song, J. Kim, S. Jeong, I. Choi, and Y.-K. Lee, Korean J. Met. Mater. 52, 1 (2014). https://doi.org/10.3365/KJMM.2014.52.1.001
  9. J. E. Jung, J. Park, J.-S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014). https://doi.org/10.1007/s12540-014-1008-y
  10. J. Y. Choi, S. W. Hwang, M. C. Ha, and K.-T. Park, Met. Mater. Int. 20, 893 (2014). https://doi.org/10.1007/s12540-014-5014-x
  11. O. Bouaziz, S. Allain, and C. P. Scott, Scripta Mater. 58, 484 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.050
  12. O. Bouaziz and N. Guelton, Mater. Sci. Eng. A 319, 246 (2001).
  13. B. X. Huang, X. D. Wang, Y. H. Rong, L. Wang, and L. Jin, Mater. Sci. Eng. A 438-440, 306 (2006). https://doi.org/10.1016/j.msea.2006.02.150
  14. S. Allain, J.-P. Chateau, and O. Bouaziz, Mater. Sci. Eng. A 387-389, 143 (2004). https://doi.org/10.1016/j.msea.2004.01.060
  15. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim, Acta Mater. 58, 3173 (2010). https://doi.org/10.1016/j.actamat.2010.01.056
  16. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003
  17. S. Lu, Q.-M. Hu, B. Johansson, and L. Vitos, Acta Mater. 59, 5728 (2011). https://doi.org/10.1016/j.actamat.2011.05.049
  18. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 3, 43 (2004). https://doi.org/10.1038/nmat1035
  19. H.Van Swygenhoven, P. M. Derlet, and A. G. Froseth, Nat. Mater. 3, 399 (2004). https://doi.org/10.1038/nmat1136
  20. J. A. Zimmerman, H. Gao, and F. F. Abraham, Model. Simul. Mater. Sc. 8, 103 (2000). https://doi.org/10.1088/0965-0393/8/2/302
  21. S. A. Kibey, L. L. Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, and D. D. Johnson, Phys. Rev. B 79, 214202 (2009). https://doi.org/10.1103/PhysRevB.79.214202
  22. A. Froseth, H. Van Swygenhoven, and P. M. Derlet, Acta Mater. 52, 2259 (2004). https://doi.org/10.1016/j.actamat.2004.01.017
  23. J. Schiotz, F. D. DiTolla, and K. W. Jacobsen, Nature 391, 561 (1998). https://doi.org/10.1038/35328
  24. Y. M. Kim, Y.-H. Shin, and B.-J. Lee, Acta Mater. 57, 474 (2009). https://doi.org/10.1016/j.actamat.2008.09.031
  25. B.-J. Lee, J.-H. Shim, and M. I. Baskes, Phys. Rev. B 68, 144112 (2003). https://doi.org/10.1103/PhysRevB.68.144112
  26. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40, 3076 (2009). https://doi.org/10.1007/s11661-009-0050-8
  27. E. B. Tadmor and N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004). https://doi.org/10.1016/j.jmps.2004.05.002
  28. S. Kibey, J. Liu, D. Johnson, and H. Sehitoglu, Appl. Phys. Lett. 91, 181916 (2007). https://doi.org/10.1063/1.2800806
  29. B. Q. Li, S. M. Sui, and S. X. Mao, J. Mater. Sci. Technol. 27, 97 (2011). https://doi.org/10.1016/S1005-0302(11)60032-7
  30. Z. H. Jin, S. T. Dunham, H. Gleiter, H. Hahn, and P. Gumbsch, Scripta Mater. 64, 605 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.033
  31. M. Jo, Y. M. Koo, B.-J. Lee, B. Johansson, L. Vitos, and S. K. Kwon, P. Natl. Acad. Sci. USA 111, 6560 (2014). https://doi.org/10.1073/pnas.1400786111
  32. W. Li, S. Lu, Q.-M. Hu, S. K. Kwon, B. Johansson, and L. Vitos, J. Phys.: Condens. Mat. 26, 265005 (2014). https://doi.org/10.1088/0953-8984/26/26/265005
  33. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010). https://doi.org/10.1016/j.msea.2010.02.041
  34. C. S. Hong, N. R. Tao, K. Ju, and X. Huang, Scripta Mater. 61, 289 (2009). https://doi.org/10.1016/j.scriptamat.2009.04.006

Cited by

  1. Role of W on the dislocation evolution in Ni-W alloy during tension followed by compression loading vol.22, pp.3, 2015, https://doi.org/10.1007/s12540-016-5551-6
  2. 오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향 vol.26, pp.6, 2015, https://doi.org/10.3740/mrsk.2016.26.6.325
  3. 고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가 vol.26, pp.7, 2016, https://doi.org/10.3740/mrsk.2016.26.7.353
  4. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-02183-4
  5. 극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성 vol.31, pp.6, 2015, https://doi.org/10.12656/jksht.2018.31.6.283
  6. Twinning in metastable high-entropy alloys vol.9, pp.1, 2015, https://doi.org/10.1038/s41467-018-04780-x
  7. 극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향 vol.29, pp.3, 2015, https://doi.org/10.3740/mrsk.2019.29.3.189