DOI QR코드

DOI QR Code

High Performance Heat Curing Copper-Silver Powders Filled Electrically Conductive Adhesives

  • Cui, Hui-Wang (Institute of Scientific and Industrial Research, Osaka University) ;
  • Jiu, Jin-Ting (Institute of Scientific and Industrial Research, Osaka University) ;
  • Sugahara, Tohru (Institute of Scientific and Industrial Research, Osaka University) ;
  • Nagao, Shijo (Institute of Scientific and Industrial Research, Osaka University) ;
  • Suganuma, Katsuaki (Institute of Scientific and Industrial Research, Osaka University) ;
  • Uchida, Hiroshi (Institute for Polymers and Chemicals Business Development Center)
  • Received : 2014.09.14
  • Accepted : 2014.11.19
  • Published : 2015.03.20

Abstract

In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., $4.53{\times}10^{-5}{\Omega}{\cdot}cm$) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives.

Keywords

References

  1. Y. Li, K. S. Moon, and C. P. Wong, Science 308, 1419 (2005). https://doi.org/10.1126/science.1110168
  2. D. Lu and C. P. Wong, In: Advanced Flip Chip Packaging, p. 201, H. M. Tong, Y. S. Lai, and C. P. Wong (eds.), Springer, New York, USA (2013).
  3. H. W. Cui, J. T. Jiu, S. Nagao, T. Sugahara, K. Suganuma, H. Uchida, and K. A. Schroder, RSC Adv. 4, 15914 (2014). https://doi.org/10.1039/C4RA00292J
  4. H. W. Cui, Q. Fan, D. S. Li, and X. Tang, J. Adhes. 89, 19 (2013). https://doi.org/10.1080/00218464.2012.725621
  5. H. W. Cui, Q. Fan, and D. S. Li, Polym. Int. 62, 1644 (2013).
  6. H. W. Cui, Q. Fan, and D. S. Li, Int. J. Adhes. Adhes. 48, 177 (2014). https://doi.org/10.1016/j.ijadhadh.2013.09.036
  7. H. W. Cui, D. S. Li, and Q. Fan, Polym. Adv. Technol. 24, 114 (2013). https://doi.org/10.1002/pat.3059
  8. H. W. Cui, D. S. Li, Q. Fan, and H. X. Lai, Int. J. Adhes. Adhes. 44, 232 (2013). https://doi.org/10.1016/j.ijadhadh.2013.03.007
  9. Y. Li and C. P. Wong, Mater. Sci. Eng. R 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  10. I. Mir and D. Kumar, Int. J. Adhes. Adhes. 28, 362 (2008). https://doi.org/10.1016/j.ijadhadh.2007.10.004
  11. L. N. Ho and H. Nishikawa, J. Electron. Mater. 41, 2527 (2012). https://doi.org/10.1007/s11664-012-2102-x
  12. Z. M. Dang, B. Zhang, J. G. Li, J. W. Zha, and G. H. Hu, J. Appl. Polym. Sci. 126, 815 (2012). https://doi.org/10.1002/app.36951
  13. L. N. Ho and H. Nishikawa, J. Mater. Sci.-Mater. Electron. 24, 2077 (2013).
  14. S. Y. Qi, B. Vaidhyanathan, and D. Hutt, J. Mater. Sci. 48, 7204 (2013). https://doi.org/10.1007/s10853-013-7537-9
  15. K. S. Tan and K. Y. Cheong, IEEE Trans. Compon. Pack. Manuf. Technol. 4, 8 (2014). https://doi.org/10.1109/TCPMT.2013.2285128
  16. H. W. Cui and W. H. Du, J. Adhes. 89, 714 (2013). https://doi.org/10.1080/00218464.2012.757696
  17. C. A. I. Mazali and M. I. Felisberti, Eur. Polym. J. 45, 2222 (2009). https://doi.org/10.1016/j.eurpolymj.2009.05.022
  18. M. Sultania, J. S. P. Rai, and D. Srivastava, Eur. Polym. J. 46, 2019 (2010). https://doi.org/10.1016/j.eurpolymj.2010.07.014
  19. H. W. Cui, Q. Fan, and D. S. Li, Int. J. Adhes. Adhes. 48, 177 (2014). https://doi.org/10.1016/j.ijadhadh.2013.09.036
  20. H. W. Cui, D. S. Li, and Q. Fan, Electron. Mater. Lett. 9, 299 (2013). https://doi.org/10.1007/s13391-013-2243-y
  21. H. W. Cui, A. Kowalczyk, D. S. Li, and Q. Fan, Int. J. Adhes. Adhes. 44, 220 (2013). https://doi.org/10.1016/j.ijadhadh.2013.03.004
  22. H. W. Cui, J. T. Jiu, S. Nagao, T. Sugahara, K. Suganuma, and H. Uchida, J. Therm. Anal. Calorim. 117, 1365 (2014). https://doi.org/10.1007/s10973-014-3902-4
  23. H. W. Cui, J. T. Jiu, T. Sugahara, S. Nagao, K. Suganuma, H. Uchida, and K. A. Schroder, J. Therm. Anal. Calorim. doi 10.1007/s10973-014-4195-3 (2014).

Cited by

  1. A comprehensive study of silver nanowires filled electrically conductive adhesives vol.26, pp.10, 2015, https://doi.org/10.1007/s10854-015-3446-9
  2. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties vol.12, pp.5, 2015, https://doi.org/10.1007/s13391-016-6179-x
  3. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique vol.55, pp.6, 2015, https://doi.org/10.7567/jjap.55.06jg01
  4. Ag 도금 Cu 입자의 제조에서 암모늄 기반 혼합 용매를 사용한 Cu 입자의 전처리 조건과 이의 영향 vol.26, pp.3, 2015, https://doi.org/10.3740/mrsk.2016.26.3.109
  5. Resistance to Oxidation at 150℃ of Sub-Micrometer Diameter Silver-Coated Copper Particles Produced by Wet Chemical Synthesis and Immersion Plating vol.58, pp.2, 2015, https://doi.org/10.2320/matertrans.ma201601
  6. One-step synthesis of oxidation-resistant Cu@Ag core-shell nanoparticles vol.13, pp.2, 2015, https://doi.org/10.1049/mnl.2017.0467
  7. A Novel Preparation Method of Electrically Conductive Adhesives by Powder Spraying Process vol.12, pp.17, 2015, https://doi.org/10.3390/ma12172793