DOI QR코드

DOI QR Code

Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites

  • Lee, Chang Hun (Department of Chemical and Biological Engineering, Korea University) ;
  • Hyeon, Dong Hun (Department of Chemical and Biological Engineering, Korea University) ;
  • Jung, Hyunchul (Department of Chemical and Biological Engineering, Korea University) ;
  • Chung, Wonkeun (Department of Chemical and Biological Engineering, Korea University) ;
  • Jo, Dong Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Shin, Dong Kun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Sung Hyun (Department of Chemical and Biological Engineering, Korea University)
  • Received : 2014.02.03
  • Accepted : 2014.08.04
  • Published : 2015.05.25

Abstract

The ZSM-5-type zeolites were prepared using three types of structure directing agent to investigate the effect of pore structure and PEI impregnation on the $CO_2$ adsorption capacity. The $CO_2$ capacity was primarily affected by the number of the adsorption site and the volume for trapping $CO_2$. $CO_2$ was well adsorbed inside the micropore with stronger electric field. The $CO_2$ capacity increased with increasing amounts of impregnated PEI until PEI loading exceeded the total pore volume, because PEI predominantly occupied the pores of ZSM-5. The ZSM-5 with large surface area and total pore volume was the most favorable for amine-impregnated ZSM-5.

Keywords

Acknowledgement

Supported by : Korea CCS R&D Center (KCRC)

References

  1. L.S. Tan, A.M. Shariff, K.K. Lau, M.A. Bustam, J. Ind. Eng. Chem. 18 (6) (2012) 1874. https://doi.org/10.1016/j.jiec.2012.05.013
  2. Y.E. Kim, J.H. Park, S.H. Yun, S.C. Nam, S.K. Jeong, Y.I. Yoon, J. Ind. Eng. Chem. 20 (4) (2014) 1486. https://doi.org/10.1016/j.jiec.2013.07.036
  3. P.N. Sutar, A. Jha, P.D. Vaidya, E.Y. Kenig, Chem. Eng. J. 207-208 (2012) 718. https://doi.org/10.1016/j.cej.2012.07.042
  4. M.J. Tuinier, M.V.S. Annaland, G.J. Kramer, J.A.M. Kuipers, Chem. Eng. Sci. 65 (2010) 114. https://doi.org/10.1016/j.ces.2009.01.055
  5. W.N.W. Salleh, A.F. Ismail, T. Matsuura, M.S. Abdullah, Sep. Purif. Rev. 40 (2011) 261. https://doi.org/10.1080/15422119.2011.555648
  6. S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2 (2009) 796. https://doi.org/10.1002/cssc.200900036
  7. Y.E. Kim, J.A. Lim, S.K. Jeong, Y.I. Yoon, S.T. Bae, S.C. Nam, Bull. Korean Chem. Soc. 34 (3) (2013) 783. https://doi.org/10.5012/bkcs.2013.34.3.783
  8. S.A. Freeman, R. Dugas, D.H.V. Wagener, T. Nguyen, G.T. Rochelle, Int. J. Greenhouse Gas Control 4 (2) (2010) 119. https://doi.org/10.1016/j.ijggc.2009.10.008
  9. A. Veawab, P. Tontiwachwuthikul, A. Chakma, Ind. Eng. Chem. Res. 38 (10) (1999) 3917. https://doi.org/10.1021/ie9901630
  10. P. Hemalatha, M. Bhagiyalakshmi, M. Ganesh, M. Palanichamy, V. Murugesan, H.T. Jang, J. Ind. Eng. Chem. 18 (1) (2012) 260. https://doi.org/10.1016/j.jiec.2011.11.046
  11. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38 (2009) 1477. https://doi.org/10.1039/b802426j
  12. M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.M. Ronconi, Microporous Mesoporous Mater. 143 (1) (2011) 174. https://doi.org/10.1016/j.micromeso.2011.02.022
  13. A. Houshmand, W.M.A.W. Daud, M.-G. Lee, M.S. Shafeeyan, Water Air Soil Pollut. 223 (2012) 827. https://doi.org/10.1007/s11270-011-0905-7
  14. L.-H. Xie, M.P. Suh, Chem. Eur. J. 19 (2013) 11590. https://doi.org/10.1002/chem.201301822
  15. E. Diaz, E. Munoz, A. Vega, S. Ordonez, Ind. Eng. Chem. Res. 47 (2008) 412. https://doi.org/10.1021/ie070685c
  16. J. Merel, M. Clausse, F. Meunier, Ind. Eng. Chem. Res. 47 (2008) 209. https://doi.org/10.1021/ie071012x
  17. P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, R. Todd, Adsorption 14 (2008) 575. https://doi.org/10.1007/s10450-008-9128-7
  18. S.K. Wirawan, D. Creaser, Microporous Mesoporous Mater. 91 (2006) 196. https://doi.org/10.1016/j.micromeso.2005.11.047
  19. K.S. Triantafyllidis, L.A. Nalbandian, P.N. Trikalitis, A.K. Ladavos, T. Mavromoustakos, C.P. Nicolaides, Microporous Mesoporous Mater. 75 (2004) 89. https://doi.org/10.1016/j.micromeso.2004.07.016
  20. B.I. Shikunov, L.I. Lafer, V.I. Yakerson, I.V. Mishin, A.M. Rubinshtein, B. Acad. Sci. USSR Ch+ 21 (1972) 201. https://doi.org/10.1007/BF00855697

Cited by

  1. KOH-activated graphite nanofibers as CO2 adsorbents vol.19, pp.None, 2016, https://doi.org/10.5714/cl.2016.19.099
  2. Adsorption of carbon dioxide by a novel amine impregnated ZSM-5/KIT-6 composite vol.7, pp.86, 2015, https://doi.org/10.1039/c7ra11235a
  3. Polyethylenimine Applications in Carbon Dioxide Capture and Separation: From Theoretical Study to Experimental Work vol.5, pp.6, 2015, https://doi.org/10.1002/ente.201600694
  4. Monoethanolamine을 함침한 ZSM5와 MS13X의 CO2 흡착특성 비교 vol.39, pp.6, 2015, https://doi.org/10.4491/ksee.2017.39.6.325
  5. An Amine Double Functionalized Composite Strategy for CO2 Adsorbent Preparation using a ZSM-5/KIT-6 Composite as a Support vol.6, pp.9, 2015, https://doi.org/10.1002/ente.201700780
  6. Effect of the SBA-15 template and KOH activation method on CO2 adsorption by N-doped polypyrrole-based porous carbons vol.28, pp.None, 2015, https://doi.org/10.5714/cl.2018.28.116
  7. Rapid CO2 Adsorption over Hierarchical ZSM-5 with Controlled Mesoporosity vol.57, pp.49, 2015, https://doi.org/10.1021/acs.iecr.8b03325
  8. Mixed Alkanolamine-Polyethylenimine Functionalized Silica for CO2 capture vol.7, pp.2, 2015, https://doi.org/10.1002/ente.201800481
  9. Polyethyleneimine-Modified UiO-66-NH2(Zr) Metal-Organic Frameworks: Preparation and Enhanced CO2 Selective Adsorption vol.4, pp.2, 2015, https://doi.org/10.1021/acsomega.8b02319
  10. Impregnation of PEI in Novel Porous MgCO3 for Carbon Dioxide Capture from Flue Gas vol.58, pp.12, 2019, https://doi.org/10.1021/acs.iecr.8b06153
  11. Carbon Dioxide Adsorbent Preparation by Coating Amine-Functionalized Pectin onto Zeolites vol.801, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.801.179
  12. A study on zeolite-based adsorbents for $$\hbox {CO}_{2}$$ capture vol.42, pp.5, 2019, https://doi.org/10.1007/s12034-019-1936-8
  13. Indoor CO2 Control through Mesoporous Amine-Functionalized Silica Monoliths vol.58, pp.42, 2015, https://doi.org/10.1021/acs.iecr.9b03338
  14. Recent advances in development of amine functionalized adsorbents for CO2 capture vol.26, pp.1, 2015, https://doi.org/10.1007/s10450-019-00151-0
  15. Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption vol.59, pp.2, 2015, https://doi.org/10.9713/kcer.2020.59.2.260
  16. Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater vol.31, pp.4, 2015, https://doi.org/10.1007/s42823-021-00231-8
  17. Development of facile synthesized mesoporous carbon composite adsorbent for efficient CO2 capture vol.50, pp.None, 2015, https://doi.org/10.1016/j.jcou.2021.101612
  18. Balancing the CO2 adsorption properties and the regeneration energy consumption via the functional molecular engineering hierarchical pore-interface structure vol.431, pp.p1, 2015, https://doi.org/10.1016/j.cej.2021.133877