DOI QR코드

DOI QR Code

Sensitivity Experiments of Vertical Resolution and Planetary Boundary Layer Parameterization Schemes on the Seoul Metropolitan Area using WRF Model

수도권 지역의 고해상도 WRF 모델 기반 연직 해상도 및 경계층 모수화 방안 민감도 실험

  • Lim, A-Young (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Roh, Joon-Woo (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Choi, Young-Jean (Weather Information Service Engine, Hankuk University of Foreign Studies)
  • 임아영 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 노준우 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 최영진 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2015.06.29
  • Accepted : 2015.08.25
  • Published : 2015.10.30

Abstract

The effects of vertical resolutions and planetary boundary layer (PBL) physics schemes in a numerical simulation with a very high resolution over the metropolitan area were investigated. The numerical experiments using the Weather Research and Forecast model were conducted from 0000 UTC 25 October to 0000 UTC 26 October 2013. We verified the numerical results against with six hourly observation data from the radiosonde at Seolleung, which was located in southern part of Seoul, and forty three auto weather systems in Seoul. In the experiments of vertical resolutions in low level atmosphere with 44, 50, and 60 layers, which are set to be subdivided particularly under 2 km height. The experiment in 60 layers, which has the highest vertical resolution in this study, showed relatively a clear diurnal variation of PBL heights. Especially, the difference of PBL heights and 10-meter wind fields were mainly seen in the area of high altitude lands for the experiments of vertical resolution. In the sensitivity experiment of PBL schemes such as asymmetric convective model-version 2 (ACM2), Yonsei University (YSU), and Mellow-Yamada-Janjic (MYJ) to the temperature, all three PBL schemes revealed lower temperature than observed profile from the radiosonde in the entire period. The experiments with YSU PBL and ACM2 PBL schemes show relatively less biased in comparison with the experiment of the MYJ PBL scheme.

수도권 지역의 고해상도 수치실험에 있어 연직 해상도와 대기경계층 모수화 방안의 효과를 조사하였다. WRF 모델을 이용하여 2013년 10월 25일 0000 UTC 부터 10월 26일 0000 UTC까지 수치 적분을 수행하였다. 수치 결과는 서울 남부에 위치한 선릉지역에서 관측된 6시간 간격의 라디오존데 자료와 서울지역의 43개 자동 기상 관측소 자료를 이용하여 검증하였다. 대기 하층의 연직해상도 비교 실험은 연직 44, 50, 60개의 층으로 구성되었으며, 특히 약 2 km고도 이하의 층을 세분화하였다. 연직 해상도가 가장 높은 60개층 실험에서 대기경계층 고도의 일 변동이 가장 뚜렷하게 나타났고, 특히 산악 지형과 같은 고지대에서는 대기경계층 고도와 10 m 바람장에서 연직해상도 실험 별 차이가 크게 나타났다. WRF 모델 내 ACM2, YSU, MYJ 대기경계층 모수화 방안에 따른 온도의 민감도 실험에서는 모든 실험수행 시간대에서 수치 모델 결과가 라디오존데 관측에 비교하여 온도를 과소 모의하였다. 지상 온도는 YSU 방안과 ACM2 방안이 MYJ 방안에 비해 상대적으로 편차가 낮게 나타났다.

Keywords

References

  1. Arasa, R., Soler, M.R., and Olid, M., 2012, Numerical experiments to determine MM5/WRF-CMAQ sensitivity to various PBL and land-surface schemes in northeastern Spain: application to a case study in summer 2009, International Journal of Environment and Pollution, 48, 105-116. https://doi.org/10.1504/IJEP.2012.049657
  2. Byon, J.Y., Choi, Y.J., and Seo, B.K., 2009, Numerical simulation of local circulation over the Deachung lake area by using the mesoscale model. Journal of Korean Earth Science Society, 30(4), 464-477. (in Korean) https://doi.org/10.5467/JKESS.2009.30.4.464
  3. Byon, J.Y., Kang, M.S., and Jung, H.S., 2013, Evaluation of wind turbine efficiency of Haengwon wind farm in Jeju island based on Korean wind map. Journal of Korean Earth Science Society, 34, 633-633. (in Korean) https://doi.org/10.5467/JKESS.2013.34.7.633
  4. Duhdia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional mode. Journal of Atmospheric Sciences, 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  5. Hong, S.Y., Noh, Y., and Dudhia, J. 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  6. Hu X.-M., Nielsen-Gammon, J.W., and Zhang, F., 2010, Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. Journal of Applied Meteorology and Climatology, 49, 1831-1844. https://doi.org/10.1175/2010JAMC2432.1
  7. Janjic, Z.I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  8. Kain, J.S., 2004: The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  9. Lee, S.H., 2011, A Numerical study on the characteristics of high resolution wind resource in mountainous areas using computational fluid dynamic analysis. Journal of Korean Earth Science Society, 32, 46-56. (in Korean) https://doi.org/10.5467/JKESS.2011.32.1.46
  10. Lin, Y.L., Farley, R.D., and Orville, H.D., 1983, Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  11. Menut, L., Bessagnet, B., Colette, A., and Khvorostiyanov, D., 2013, On the impact of the vertical resolution on chemistry-transport modeling. Atmospheric Environment, 67, 370-284. https://doi.org/10.1016/j.atmosenv.2012.11.026
  12. Mlawer, E.J., Taubman, S.J., Vrown, P.D., Iacono, M.J., and Clough, S.A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102D, 16 663-16 682.
  13. Moon, N.K., Kim, S.T., and Seo, J.H., 2011, Sensibility study for PBL scheme of WRF-CMAQ. Journal of Korean Society for Atmospheric Environment, 27, 791-804. (in Korean) https://doi.org/10.5572/KOSAE.2011.27.6.791
  14. Park, S.H., Jee, J.B., and Lee, C.Y., 2015, Sensitivity Test of the Numerical Simulation with High Resolution Topography and Landuse over Seoul Metropolitan and Surrounding Areas. Atmosphere Korean Meteorological Society, 25, 309-322. (in Korean)
  15. Pleim, J.E. and Xiu, A. 2003, Development of a land surface model. Part II: Data assimilation. Journal of Applied Meteorology, 42, 1811-1822. https://doi.org/10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2
  16. Pleim, J.E., 2007, A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46, 1383-1395. https://doi.org/10.1175/JAM2539.1
  17. Pleim, J.E., 2007, A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part II: Application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 46, 1396-1409. https://doi.org/10.1175/JAM2534.1
  18. Pleim, J.E., 2006, A simple, efficient solution of fluxprofile relationships in the atmospheric surface layer. Journal of Applied Meteorology and Climatology, 45, 341-347. https://doi.org/10.1175/JAM2339.1
  19. Seaman, N.L., 2000, Meteorological modeling for airquality assessment. Atmospheric Environment, 34, 2231-2259. https://doi.org/10.1016/S1352-2310(99)00466-5
  20. Seo, B.G., Byon, J.Y., and Choi, Y.J., 2010, Sensitivity Evaluation of wind fields in surface layer by WRF-PBL and LSM parameterizations. Atmosphere Korean Meteorological Society, 20, 319-332. (in Korean)
  21. Stull, R.B., 1988, An introduction to boundary layer meteorology. 13, Springer Science & Business Media, 2-4 p.
  22. U.S. EPA, 2007, Guidance on the use of models and other analysis for demonstrating attainment of air quality goals for ozone, PM2.5, and regional haze. Tech Rep., EPA-454/B-07-002, Research Triangle Park, NC, 152-153 p.
  23. Yu, S., Mathur, R., Sarwar, G., Kang, D., Tong, D., Poulot, G., and Pleim, J., 2010, Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study. Atmospheric Chemistry Physics, 10, 3001-3025. https://doi.org/10.5194/acp-10-3001-2010
  24. Yerramilli A., Challa, V.S., Dodla, V.B.R., Myles, L., Pendergrass, W.R., Vogel, C.A., Tuluri, F., Baham, J.M., Hughes, R., Patrick, C., Young, J., and Swanier, S., 2012, Simulation of surface ozone pollution in the Central Gulf Coast region during summer synoptic condition using WRF/Chem air quality model. Atmospheric Pollution Research, 3, 55-71. https://doi.org/10.5094/APR.2012.005
  25. Zhang, D.L. and Zheng, W.Z. 2004, Diurnal Cycles of Surface Winds and Temperatures as Simulated by Five Boundary Layer Parameterization. Journal of Applied Meteorology, 43, 157-169. https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2

Cited by

  1. An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.448