DOI QR코드

DOI QR Code

Oxidative Stress Inhibitory Effects of Low Temperature-Aged Garlic (Allium sativum L.) Extracts through Free Radical Scavenging Activity

저온숙성마늘의 라디칼 소거 활성을 통한 산화스트레스 억제 효과

  • Hwang, Kyung-A (Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Kim, Ga Ram (Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Hwang, Yu-Jin (Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Hwang, In-Guk (Department of Agrofood Resources, National Academy of Agricultural Science, RDA) ;
  • Song, Jin (Department of Agrofood Resources, National Academy of Agricultural Science, RDA)
  • 황경아 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 김가람 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 황유진 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 황인국 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 송진 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과)
  • Received : 2015.09.24
  • Accepted : 2015.11.25
  • Published : 2016.01.31

Abstract

Garlic has drawn attention as a food material for its anti-oxidative and anti-inflammatory properties as well as for prevention and treatment of cancer. In order to increase efficiency, various aging methods for garlic have been attempted. In particular, thermally processed garlic is known to have higher biological activities due to its various chemical changes during heat treatment. Therefore, in this study, we investigated the anti-oxidative effects of garlic extracts aged at low temperature ($60{\sim}70^{\circ}C$). In the results, 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis (3-ethylbenzo-thiazoline-6-sulfonate) radical scavenging activities and ferric reducing ability of low temperature-aged garlic (LTAG) were similar to those of raw garlic. LTAG also showed decreased lipopolysaccharide (LPS)-induced production of reactive oxygen species, although there were not significant differences among samples. In addition, xanthine oxidase activity was inhibited by LTAG; the 15 days and $60^{\circ}C$ extract showed outstanding inhibition compared with the others. To understand the molecular mechanisms behind the anti-oxidative activity of LTAG, we performed quantitative real-time PCR analysis. The 30 days and $70^{\circ}C$ extract upregulated mRNA expression of antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD), Mn-SOD, glutathione peroxidase, and catalase in LPS-stimulated RAW 264.7 cells. This result indicates that LTAG can be a functional food as a nature antioxidant and antioxidant substance.

본 연구에서는 마늘의 숙성 기간(15일, 30일, 60일)과 온도($60^{\circ}C$, $70^{\circ}C$)를 달리한 저온숙성마늘과 생마늘의 항산화 효과를 비교 분석하였다. DPPH와 ABTS의 라디칼 소거능과 FRAP법에 의한 환원력을 측정한 결과 $250{\mu}g/mL$에서 생마늘 추출물보다 30일 $70^{\circ}C$ 추출물과 60일 $60^{\circ}C$ 추출물의 항산화 활성이 우수하였다. 세포 내 활성산소 생성은 15일 $60^{\circ}C$ 추출물과 30일 $70^{\circ}C$ 추출물에서 높은 억제 효과를 보였으며, xanthine oxidase에 대한 활성 저해 효과 역시 15일 $60^{\circ}C$ 추출물에서 우수하였다. 항산화 효소의 유전자 발현은 LPS를 처리한 군과 생마늘 추출물보다 30일 $70^{\circ}C$ 추출물에서 높은 효과를 보였다. 본 연구 결과를 통해 저온숙성마늘이 생마늘보다 항산화 활성이 우수하다는 것을 확인함으로써 차후 항산화 건강기능식품 소재로서의 활용이 가능할 것으로 판단되나, 저온숙성마늘 추출물의 체내 생리활성 메커니즘 규명을 위해 동물실험 등의 추가적인 연구를 계속적으로 수행할 예정이다.

Keywords

References

  1. Halliwell B, Gutteridge JM, Cross CE. 1992. Free radicals, antioxidants, and human disease: where are we now?. J Lab Clin Med 119: 598-620.
  2. Jiang WY. 2005. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol Sci 26: 558-563. https://doi.org/10.1016/j.tips.2005.09.006
  3. Park DJ, Kim SG, Yoon MK, Park SY, Kim YH, Lee SJ, Choi YW. 2010. Effects of extracts from raw and black garlic on anticancer, antioxidant, antiinflammatory and whitening. Korean J Hort Sci Technol 28: 39-40.
  4. Kim JH, Ahn MS, Kim GH, Kang MH. 2006. Antioxidant and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Techonol 38: 799-804.
  5. Atoui AK, Mansouri A, Boskou G, Kefalas P. 2005. Tea and herbal infusions: Their antioxidant activity and phenolic propolis. Food Chem 89: 27-36. https://doi.org/10.1016/j.foodchem.2004.01.075
  6. Kang MJ, Yoon HS, Shin JH. 2012. Chemical properties and biological activity of garlic (Allium sativum L.) shoots. J Agric Life Sci 46: 129-139.
  7. Chun HJ, Park JE. 1997. Effect of heat treatment of garlic added diet on the blood of spontaneously hypertension rat. J Korean Soc Food Sci Nutr 26: 103-108.
  8. Katsuzi N, Park M, Ha SD, Kim GH. 2000. Effects of garlic extract for protecting the infection of influenza virus. J Korean Soc Food Nutr 29: 128-133.
  9. Kim HK, Kwak HJ, Kim KH. 2002. Physiological activity and antioxidative effect of garlic (Allium sativum L.) extract. Food Sci Biotechnol 11: 500-506.
  10. Leelarungrayub N, Rattanapanone V, Chanarat N, Gebicki JM. 2006. Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 22: 266-274. https://doi.org/10.1016/j.nut.2005.05.010
  11. Choi DJ, Lee SJ, Kang MJ, Cho HS, Sung NJ, Shin JH. 2008. Physicochemical characteristics of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr 37: 465-471. https://doi.org/10.3746/jkfn.2008.37.4.465
  12. Lawson LD, Wang ZJ. 2005. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: use in measuring allicin bioavailability. J Agric Food Chem 53: 1974-1983. https://doi.org/10.1021/jf048323s
  13. Choi YH, Shim YS, Kim CT, Lee C, Shin DB. 2007. Characteristics of thiosulfinates and volatile sulfur compounds from blanched garlic reacted with alliinase. Korean J Food Sci Technol 39: 600-607.
  14. Cho KJ, Cha JY, Yim JH, Kim JH. 2011. Effects of aging temperature and time on the conversion of garlic (Allium sativum L.) components. J Korean Soc Food Sci Nutr 40: 84-88. https://doi.org/10.3746/jkfn.2011.40.1.084
  15. Sharma VK, Choi J, Sharma N, Choi M, Seo SY. 2004. In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother Res 18: 841-844. https://doi.org/10.1002/ptr.1428
  16. Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T. 2005. 5-Hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128: 552-561. https://doi.org/10.1111/j.1365-2141.2004.05332.x
  17. Monien BH, Frank H, Seidel A, Glatt H. 2009. Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chem Res Toxicol 22: 1123-1128. https://doi.org/10.1021/tx9000623
  18. Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG. 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130. https://doi.org/10.1002/ptr.687
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  21. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salvia officinalis). J Agric Food Chem 46: 4869-4873. https://doi.org/10.1021/jf980614b
  22. Shin JH, Choi DJ, Chung MJ, Kang MJ, Sung NJ. 2008. Changes of physicochemical components and antioxidant activity of aged garlic at different temperatures. J Korean Soc Food Sci Nutr 37: 1174-1181. https://doi.org/10.3746/jkfn.2008.37.9.1174
  23. Moreno FJ, Corzo-martinez M, Casrillo MD, Villamiel M. 2006. Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Res Int 39: 891-897. https://doi.org/10.1016/j.foodres.2006.03.012
  24. Lee SJ, Shin JH, Kang MJ, Jung WJ, Ryu JH, Kim RJ, Sung NJ. 2010. Antioxidants activity of aged red garlic. J Life Sci 20: 775-781. https://doi.org/10.5352/JLS.2010.20.5.775
  25. Yoo KM, Kim DO, Lee CY. 2007. Evaluation of different methods of antioxidant measurement. Food Sci Biotechonol 16: 177-182.
  26. Hwang CR, Kang MJ, Shim HJ, Sub HJ, Kwon OO, Shin JH. 2015. Antioxidant and antiobesity activities of various color resources extracted from natural plants. J Korean Soc Food Sci Nutr 44: 165-172. https://doi.org/10.3746/jkfn.2015.44.2.165
  27. Kader KN, Coyle CH. 2007. Reactive oxygen and nitrogen species: implications for cardiovascular device engineering. J Biomed Mater Res B Appl Biomater 83: 138-144.
  28. Freeman BA, Crapo JD. 1982. Biology of disease: free radicals and tissue injury. Lab Invest 47: 412-426.
  29. Noworyta-Sokolowska K, Gorska A, Golembiowska K. 2013. LPS-induced oxidative stress and inflammatory reaction in the rat striatum. Pharmacol Rep 65: 863-869. https://doi.org/10.1016/S1734-1140(13)71067-3
  30. Iio M, Moriyama A, Matsumoto Y, Takaki N, Fukumoto M. 1985. Inhibition of xanthine oxidase by flavonoids. Agric Biol Chem 49: 2173-2176.
  31. Kang JR, Hwang CR, Sim HJ, Kang MJ, Kang ST, Shin JH. 2015. Biological activities of yellow garlic extract. J Korean Soc Food Sci Nutr 44: 983-992. https://doi.org/10.3746/jkfn.2015.44.7.983
  32. Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. J Nat Prod 51: 345-348. https://doi.org/10.1021/np50056a030
  33. Cho K, Cha J, Lim J, Kim J. 2011. Formation of 5-HMF in making aged garlic (Allium sativum L.) under different condition. Planta Med 77: PJ4.
  34. Chaudiere J, Ferrari-Iliou R. 1999. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37: 949-962. https://doi.org/10.1016/S0278-6915(99)00090-3
  35. Del Maestro R, Thaw HH, Bjork J, Planker M, Arfors KE. 1980. Free radicals as mediators of tissue injury. Acta Physiol Scand Suppl 492: 43-57.
  36. Zelko IN, Mariani TJ, Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33: 337-349. https://doi.org/10.1016/S0891-5849(02)00905-X
  37. Asimakis GK, Lick S, Patterson C. 2002. Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 105: 981-986. https://doi.org/10.1161/hc0802.104502
  38. Imai H, Nakagawa Y. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34: 145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
  39. Deisseroth A, Dounce AL. 1970. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50: 319-375. https://doi.org/10.1152/physrev.1970.50.3.319
  40. Kim HJ, Lee SG, Park SJ, Yu MH, Lee EJ, Lee SP, Lee IS. 2012. Antioxidant effects of extracts from fermented red ginseng added with medicinal herbs in STZ-induced diabetic rats. Korean J Food Sci Technol 44: 367-372. https://doi.org/10.9721/KJFST.2012.44.3.367

Cited by

  1. Comparison of Total Phenol, Flavonoid Contents, and Antioxidant Activities of Orostachys japonicus A. Berger Extracts vol.25, pp.5, 2016, https://doi.org/10.5322/JESI.2016.25.5.695
  2. Antioxidant and anti-inflammatory activities of Opuntia ficus-indica and Opuntia humifusa fruits ethanol extracts vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.586
  3. 블랙 초크베리 추출물의 항산화 활성 및 아질산염 소거 활성 vol.25, pp.4, 2016, https://doi.org/10.5322/jesi.2016.25.4.567
  4. Effects of Low Temperature-Aged Garlic on Exercise Performance and Fatigue in Mice vol.22, pp.9, 2016, https://doi.org/10.1089/jmf.2018.4294
  5. Inhibitory Effects of Zingiber officinale Roscoe Roots, Stems, and Leaves on Oxidative Stress through Free Radical Scavenging Activity vol.50, pp.2, 2016, https://doi.org/10.3746/jkfn.2021.50.2.128