Inhibitory Effects of the EtOH Extract of Aster koraiensis on AGEs formation in STZ-induced diabetic rats and AGEs-induced Protein Cross-linking in vitro

벌개미취 에탄올추출물의 STZ-유도 당뇨 모델에서의 최종당화산물의 생성 및 교차결합에 미치는 효과

  • Kim, Junghyun (Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Chan-Sik (Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Kim, Jin Sook (Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine)
  • 김정현 (한국한의학연구원 한의약융합연구부) ;
  • 김찬식 (한국한의학연구원 한의약융합연구부) ;
  • 김진숙 (한국한의학연구원 한의약융합연구부)
  • Received : 2016.08.11
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

Advanced glycation end products (AGEs) such as $N^{\varepsilon}$-(carboxy-methyl)lysine (CML) have been implicated in the development of diabetic nephropathy. The aim of this study was to investigate the inhibitory effects of ethanolic extract of Aster koraiensis (AKE) on AGEs formation and AGEs-collagen cross-linking in vitro and CMLs formation in streptozotocin (STZ)-induced diabetic rats. AKE significantly inhibited AGEs formation ($IC_{50}$ value of $18.74{\mu}g/mL$) and AGEs-collagen cross-linking ($IC_{50}$ value of 0.274 mg/mL) in vitro than the well-known glycation inhibitor aminoguanidine ($IC_{50}$ value of $72.12{\mu}g/mL$ and 1.99 mg/mL, respectively). AKE (100 mg/kg per day) was given to diabetic rats for 9 weeks. In STZ-induced diabetic rats, severe hyperglycemia was developed, and urinary CMLs and plasma CMLs were markedly increased. Immunohistochemical stain revealed that CMLs were accumulated within renal glomerulus in STZ-induced diabetic rats. However, AKE significantly reduced urinary CMLs and plasma CMLs in diabetic rats. CMLs accumulation was inhibited by AKE treatment in the renal glomerulus. These results suggest that AKE had an inhibitory effect of AGE accumulation in the glomeruli of diabetic rat and could be an inhibitor of AGE-induced protein cross-linking. The oral administration of AKE may significantly help to prevent the progression of diabetic nephropathy in patients with diabetes.

Keywords

References

  1. Song, F. and Schmidt, A. M. (2012) Glycation and insulin resistance: novel mechanisms and unique targets? Arterioscler. Thromb. Vasc. Biol. 32: 1760-1765. https://doi.org/10.1161/ATVBAHA.111.241877
  2. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M., Yan, S. F., Pischetsrieder, M., Stern, D., Schmidt A. M. (1999) N(epsilon)- (carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 274: 31740-31749. https://doi.org/10.1074/jbc.274.44.31740
  3. Bierhaus, A., Hofmann, M. A., Ziegler, R. and Nawroth, P. P. (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc. Res. 37: 586-600. https://doi.org/10.1016/S0008-6363(97)00233-2
  4. Singh, V. P., Bali, A., Singh, N. and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications. Korean. J. Physiol. Pharmacol. 18: 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
  5. Rahbar, S. and Figarola, J. L. (2003) Novel inhibitors of advanced glycation endproducts. Arch. Biochem. Biophys. 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
  6. Corns, C. M. (2003) Herbal remedies and clinical biochemistry. Ann. Clin. Biochem. 40: 489-507. https://doi.org/10.1258/000456303322326407
  7. Tapsell, L. C., Hemphill, I., Cobiac, L., Patch, C. S., Sullivan, D. R., Fenech, M., Roodenrys, S., Keogh, J. B., Clifton, P. M., Williams, P. G., Fazio V. A., Inge K. E. (2006) Health benefits of herbs and spices: the past, the present, the future. Med. J. Aust. 185: S4-24.
  8. 안덕균 (2006) 원색한국본초도감. 교학사 7판: 641.
  9. 한국생약학교수협의회 (1995) 본초학(本草學). 대한약사회: 618-620.
  10. 김창민, 심민교, 안덕균, 이경순 (1998) 완역 중약대사전. 정담: 4625-4630.
  11. Sohn, E., Kim, J., Kim, C. S., Kim, Y. S., Jang, D. S. and Kim, J. S. (2010) Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via antiapoptosis of podocytes in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 391: 733-738. https://doi.org/10.1016/j.bbrc.2009.11.129
  12. Kim, C. S., Kim, J., Jeong, I. H., Kim, Y. S., Lee, J., Jang, D. S. and Kim, J. S. (2009) Slow Development of Diabetic Cataract in Streptozotocin-induced Diabetic Rats via Inhibition of Aldose Reductase Activity and Sorbitol Accumulation by Use of Aster koraiensis Extract. Kor. J. Pharmacogn. 40: 339-344.
  13. 정현주 (1999) 벌개미취의 성분 및 생리활성. 충남대학교 대학원 박사학위 논문.
  14. Forbes, J. M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D. M., Vasan, S., Wagle, D., Jerums, G. and Cooper, M. E. (2001) Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 44: 108-114. https://doi.org/10.1007/s001250051587
  15. Morris, R. D., Rimm, D. L., Hartz, A. J., Kalkhoff, R. K. and Rimm, A. A. (1989) Obesity and heredity in the etiology of non-insulin-dependent diabetes mellitus in 32,662 adult white women. Am. J. Epidemiol. 130: 112-121. https://doi.org/10.1093/oxfordjournals.aje.a115302
  16. Blair, M. (2016) Diabetes Mellitus Review. Urol Nurs 36: 27-36.
  17. Musabayane, C. T. (2012) The effects of medicinal plants on renal function and blood pressure in diabetes mellitus. Cardiovasc. J. Afr. 23: 462-468. https://doi.org/10.5830/CVJA-2012-025
  18. Lee, J., Lee, Y. M., Lee, B. W., Kim, J. H. and Kim, J. S. (2012) Chemical constituents from the aerial parts of Aster koraiensis with protein glycation and aldose reductase inhibitory activities. J. Nat. Prod. 75: 267-270. https://doi.org/10.1021/np200646e
  19. Soulis-Liparota, T., Cooper, M., Papazoglou, D., Clarke, B. and Jerums, G. (1991) Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 40: 1328-1334. https://doi.org/10.2337/diab.40.10.1328
  20. Glomb, M. A. and Monnier, V. M. (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem. 270: 10017-10026. https://doi.org/10.1074/jbc.270.17.10017
  21. Tanji, N., Markowitz, G. S., Fu, C., Kislinger, T., Taguchi, A., Pischetsrieder, M., Stern, D., Schmidt, A. M. and D'Agati, V. D. (2000) Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J. Am. Soc. Nephrol. 11: 1656-1666.
  22. Singh, R., Barden, A., Mori, T. and Beilin, L. (2001) Advanced glycation end-products: a review. Diabetologia 44: 129-146. https://doi.org/10.1007/s001250051591
  23. Harris, M. and Wan, Q. (2005) Keeping the diabetic heart healthy. Aust. Fam. Physician 34: 441-445.
  24. Ulrich, P. and Cerami, A. (2001) Protein glycation, diabetes, and aging. Recent. Prog. Horm. Res. 56: 1-21. https://doi.org/10.1210/rp.56.1.1
  25. Hammes, H. P., Martin, S., Federlin, K., Geisen, K. and Brownlee, M. (1991) Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. 88: 11555-11558. https://doi.org/10.1073/pnas.88.24.11555