DOI QR코드

DOI QR Code

Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test

직경 600mm PHC 매입말뚝의 동재하시험을 통한 허용 지지력 평가

  • Woo, Gyu-Seong (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Park, Jong-Bae (Housing & Urban Research Institute, LHI) ;
  • Seo, Mi-Jeong (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 우규성 (고려대학교 건축사회환경공학부) ;
  • 박종배 (한국토지주택공사 토지주택연구원) ;
  • 서미정 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2016.09.06
  • Accepted : 2016.11.16
  • Published : 2016.11.30

Abstract

For the construction of high-rise structures and the optimized foundation design, the use of the large-diameter PHC pile has increased. Especially, the use of the 600 mm diameter PHC pile has significantly increased. In this study, for the evaluation of the suitability of the current design practice, the 46 dynamic pile load tests, which were carried out in the 600 mm diameter preboring PHC pile, are analyzed. The end bearing capacity is obtained from the end of initial driving test and the shaft capacity is estimated from the restrike test. The allowable capacities estimated by the dynamic load test are compared with those based on the current design practice. The analyses show that the allowable end bearing capacity evaluated by the dynamic pile load test is greater than the design practice in most piles. The allowable shaft capacity, however, is smaller than the design practice in many piles. The higher end bearing capacity and the smaller shaft capacity may result from the improvement of the drilling equipment and the increase in the penetration depth. Thus, the portion of the end bearing capacity in the total capacity increases.

구조물의 고층화가 진행됨과 동시에 효율적인 기초 설계를 위해 대구경 PHC 말뚝의 사용이 증가하고 있으며, 특히 600mm PHC 말뚝의 사용량이 급증하고 있다. 본 연구에서는 현재 사용되고 있는 설계법의 적정성을 평가하기 위하여, 직경 600mm PHC 매입말뚝에 대하여 수행된 46본의 동재하시험 결과를 분석하였다. 선단지지력은 초기항타시험의 결과를 이용하였으며 주면마찰력은 재항타시험 결과를 이용하여 각각의 허용지지력을 산정하였다. 동재하시험으로부터 산정된 허용지지력을 현재 사용되는 설계법으로 평가된 허용지지력과 비교하였다. 분석결과, 동재하시험으로 산정된 허용선단지지력은 대부분의 말뚝에서 설계기준보다 컸지만, 허용주면마찰력은 많은 말뚝에서 설계기준보다 작게 산정되었다. 이와 같은 큰 선단지지력과 작은 주면마찰력은 천공장비의 성능 향상 및 굴착 깊이의 증가 때문이며 이로 인해 전체지지력에서 선단지지력이 차지하는 비율이 높아졌기 때문이다.

Keywords

References

  1. ASTM D 4945-00 (2000), "Standard Test Method for High-Strain Dynamic Testing of Piles", ASTM International, West Conshohocken, 10p.
  2. Cho, C. W. (2010), "Piling Engineering Practice", Engineer Book, Seoul, 744p.
  3. Davisson, M. T. (1972), "High capacity piles", Proceedings of Lecture Series on Innovations in Foundation Construction, pp.81-112.
  4. Rausche, F., Goble, G., and Likins, G. (1985), "Bearing Capacity of Piles from Dynamic Measurements", Case Western Reserve Univ., Cleveland, 76p.
  5. Hong, H. S., Lee, W. J., Kim, S. H., and Lee, M. H. (1995), "Study on an evaluation of pile bearing capacity using dynamic test", 1995 Spring Geotechnical Engineering Conference, pp.43-53.
  6. Korean Geotechnical Society (2015), "Foundation Structure Design Code", CIR, Seoul, pp.291-292.
  7. Lim, H. S., Park, Y. B., and Kim, J. S. (2004), "A Research for the Modification of Bearing Capacity Estimation on SIP Pile", Housing & Urban Research Institute, Daejeon, 51p.
  8. Likins, G., Rausche, F., Thendean, G., and Svinkin, M. (1996), "CAPWAP Correlation Studies", The Fifth International Conference on the Application of Stress-Wave Theory to Piles, Florida, pp.447-464.
  9. Likins, G. (2004), "Pile Testing - Selection and Economy of Safety Factors", Current Practices and Future Trends in Deep Foundations, pp.239-252.
  10. Lim, H. S., Park, Y. B., Park, J. B., and Kim, W. C. (2005), "A Research for the Modification of End Bearing Capacity on SIP Pile", Proceedings of Korean Geo-Environmental Society, Seoul, Sep 30, pp.217-225.
  11. Ministry of Knowledge Economy KATS (2002), KS F 7001: Standard practice for execution of spun concrete piles, 45p.
  12. Park, J. B. (2004), "Strength and Friction Behavior of Cement Paste Poured in the Bored Pile", Journal of the Korean Geoenvironmental Society, Vol.5, No.3, pp.31-39.
  13. Park, J. B., Kim, J. S., and Lim, H. S. (2004a), "Estimation of Bearing Capacity of SIP Pile Installed by Improved Criteria", Journal of the Korean Geoenvironmental Society, Vol.5, No.3, pp.5-15.
  14. Park, J. B., Kim, J. S., Lim, H. S., and Park, Y. B. (2004b), "Estimation of Bearing Capacity of SIP Pile by Static & Dynamic Load Tests", Korean Society of Civil Engineers Coference, pp.2356-2361.
  15. Park, J. B., Lim, H. S., and Park, Y. B. (2008), "Design and Load Test Criteria of SIP at Korea National Housing Corporation", 2008 Fall Geotechnical Engineering Conference, Gyeongju, Oct 10-11, pp.533-540.
  16. Park, Y. H. (2000), "The Behavior of Bearing Capacity for the Precast Piles", Journal of the Korean Geotechnical Society, Vol.16, No.1, pp.107-116.
  17. U.S. Army of Corps of Engineers (1991), Design of Pile Foundation, EM1110-2-2906, 185p.

Cited by

  1. PHC 매입말뚝의 설계효율과 지지력 특성 사례분석 vol.18, pp.3, 2019, https://doi.org/10.12814/jkgss.2019.18.3.045
  2. 초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정 vol.36, pp.7, 2016, https://doi.org/10.7843/kgs.2020.36.7.15
  3. Empirical Bearing Capacity Formula for Steel Pipe Prebored and Precast Piles Based on Field Tests vol.21, pp.9, 2016, https://doi.org/10.1061/(asce)gm.1943-5622.0002112