DOI QR코드

DOI QR Code

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea

울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포

  • 이민지 (한국해양과학기술원 남해특성연구센터) ;
  • 김동선 (한국해양과학기술원 환경기반연구센터) ;
  • 김영옥 (한국해양과학기술원 남해특성연구센터) ;
  • 손문호 (한국해양과학기술원 남해특성연구센터) ;
  • 문창호 (부경대학교 해양학과) ;
  • 백승호 (한국해양과학기술원 남해특성연구센터)
  • Received : 2015.12.14
  • Accepted : 2016.02.14
  • Published : 2016.02.29

Abstract

To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

2014년 울산만 내, 외측 해역에서 해양환경의 계절 변화가 식물플랑크톤 군집의 공간 분포에 미치는 영향을 파악하였다. 울산만을 태화강 하구에 위치한 내측과 외양 영향을 강하게 받는 외측으로 나누어, 내측과 외측의 환경 차이를 t-test로 검증하였다. 수온은 동계(t = -5.833, p < 0.01)와 추계(p > 0.05)에는 외측이 높았고, 춘계(t = 4.247, p < 0.01)와 하계(t = 2.876, p < 0.05)에는 내측이 높았다. 염분은 추계를 제외한 모든 계절에 내측에서 외측보다 유의하게 낮았다(p < 0.01). 동계에는 수층 혼합에 의해 전 수층에서 영양염 농도가 높았고, 하계에는 담수 유입으로 내측 표층에서 현저하게 높았다. 크기 분획된 Chl. a 양은 $20{\mu}m$보다 작은 크기의 nano, pico식물플랑크톤의 양이 많았다. 극미소 식물플랑크톤은 영양염 농도가 낮은 외양 환경에서 적응력이 높은데 이러한 결과는 조사해역이 외양의 영향을 강하게 받고 있음을 시사한다. 춘계와 하계에는 내측 정점을 중심으로 유글레나류 Eutreptiella gymnastica의 밀도가 특이적으로 높았다. 이는 강우 후 많은 담수가 유입되어 저염분 환경이 조성되고 DIN (nitrate+nitrite, ammonium)이 대량 공급되었기 때문이다. 하계에는 태화강으로부터 다량의 담수가 공급되어 담수미세 남조류 Oscillatoria sp., Microcystis sp.가 내측 정점(1-5)을 중심으로 높은 밀도로 출현하였다. 추계와 동계에는 규조류와 은편모류가 우점하였다. 높은 현존량을 보인 중심 규조류Chaetoceros 속은 성층 약화로 저층에서 공급되는 영양염류의 영향을 받아 빠르게 성장하였고, 은편모조류는 다른 식물플랑크톤의 상대적인 성장 둔화로 기회적으로 우점하였다. 결과적으로 울산만은 강우기인 춘계와 하계에 태화강의 영향을 강하게 받아 내측 정점을 중심으로 저염분, 고영양염 환경이 유지되었고, 추계와 동계에는 만 외측 외양수의 영향을 크게 받았으며, 식물플랑크톤 군집은 크게 이 두가지 환경요인에 의해 계절적으로 제어되는 것으로 판단되었다.

Keywords

References

  1. Anderson, D.M., P.M. Glibert and J.M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25: 704-726. https://doi.org/10.1007/BF02804901
  2. Bae, S.W., D. Kim, Y.O. Kim, C.H. Moon and S.H. Baek, 2014. The influences of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in Gwangyang Bay, Korea. Korean J. Environ. Biol., 32: 35-48. https://doi.org/10.11626/KJEB.2014.32.1.035
  3. Baek, S.H., D. Kim, M. Son, S.M. Yun and Y.O. Kim, 2015. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf. Sci., 163: 265-278. https://doi.org/10.1016/j.ecss.2014.12.035
  4. Barone, R. and L. Naselli-Flores, 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia, 502: 325-329. https://doi.org/10.1023/B:HYDR.0000004290.22289.c2
  5. Cho, K.-D. and Y.-K. Choe, 1988. Seasonal variation of the water type in the Tsushima Current. Korea. Fish. Aquatic. Sci., 21: 331-340.
  6. Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210: 223-253. https://doi.org/10.3354/meps210223
  7. Cushing, D.H., 1989. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res., 11: 1-13. https://doi.org/10.1093/plankt/11.1.1
  8. Dortch, Q. and T.E. Whitledge, 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res., 12: 1293-1309. https://doi.org/10.1016/0278-4343(92)90065-R
  9. Fisher, T., 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82: 51-63. https://doi.org/10.3354/meps082051
  10. Goldman, J.C., J.J. McCarthy and D.G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279: 210-215. https://doi.org/10.1038/279210a0
  11. Guinder, V.A., C.A. Popovich, J.C. Molinero and J. Marcovecchio, 2013. Phytoplankton summer bloom dynamics in the Bahía Blanca Estuary in relation to changing environmental conditions. Cont. Shelf Res., 52: 150-158. https://doi.org/10.1016/j.csr.2012.11.010
  12. Iriarte, A. and D.A. Purdie, 1994. Size Distribution of chlorophyll-a biomass and primary production in a temperate estuary (Southampton water) - the contribution of photosynthetic picoplankton. Mar. Ecol. Prog. Ser., 115: 283-297. https://doi.org/10.3354/meps115283
  13. Joo, H.M., J.H. Lee and S.W. Jung 2011. Correlations between cell abundance, bio-volume and chlorophyll a concentration of phytoplankton communities in coastal waters of Incheon, Tongyeong and Ulsan of Korea. Korean J. Environ. Biol., 29: 312-320.
  14. Kattner, G., 1999. Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride. Mar. Chem., 67: 61-66. https://doi.org/10.1016/S0304-4203(99)00049-3
  15. Kim, D., H.-W. Choi, K.H. Kim, J H. Jeong, S.H. Baek and Y.-O. Kim, 2011. Statistical analysis on the quality of surface water in Jinhae Bay during winter and spring. Ocean Polar Res., 33: 291-301. https://doi.org/10.4217/OPR.2011.33.3.291
  16. Kim, J.T. and S.M. Boo, 2001. Morphological variation and density of Euglena viridis (Euglenophyceae) related to environmental factors in the urban drainages. Korean J. Limnol., 34: 185-191.
  17. Kim, J.T., S.M. Boo and B. Zakrys, 1998. Floristic and taxonomic accounts of the genus Euglena (Euglenophyceae) from Korean fresh waters. Algae, 13: 173-197.
  18. Klaveness, D., 1989. Biology and ecology of the Cryptophyceae: status and challenges. Biol. Oceanogr., 6: 257-270.
  19. Koh, C.H., J.S. Khim, D.L. Villeneuve, K. Kannan and J.P. Giesy, 2002. Analysis of trace organic contaminants in sediment, pore water, and water samples from Onsan Bay, Korea: instrumental analysis and in vitro gene expression assay. Environ. Toxicol. Chem., 21: 1796-1803. https://doi.org/10.1002/etc.5620210906
  20. Kwon, O.Y. and J.-H. Kang, 2013. Seasonal variation of physicochemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea. J. Korea. Acad. Industr. Coop. Soc., 14: 6008-6014. https://doi.org/10.5762/KAIS.2013.14.11.6008
  21. Lee, S., Y. Sin, S. Yang and C. Park, 2005. Seasonal characteristics of phytoplankton distribution in Asan Bay. Ocean Polar Res., 27: 149-159. https://doi.org/10.4217/OPR.2005.27.2.149
  22. Marshall, H.G. and R. Lacouture, 1986. Seasonal patterns of growth and composition of phytoplankton in the lower Chesapeake Bay and vicinity. Cont. Shelf Res., 23: 115-130.
  23. Oh, S.J., J.S. Lee, J.S. Park, I.H. Noh and Y.H. Yoon, 2008. Environmental factor on the succession of phytoplankton community in Jinju Bay, Korea. Korean Soc. Mar. Environ Eng., 11: 98-104.
  24. Ohwada, M. and F. Ogawa, 1966. Plankton in the Japan Sea. Oceanogr. Mag., 18: 39-42.
  25. Palmer, C.M., 1969. A composite rating of algae tolerating organic pollution2. J. Phycol., 5: 78-82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x
  26. Park, J.S., Y.H. Yoon and S.J. Oh, 2009. Variational characteristics of phytoplankton community in the mouth parts of Gamak Bay, southern Korea. Korean J. Environ. Biol., 27: 205-215.
  27. Park, S.-E., S.-J. Hong, W.-C. Lee, R.-H. Jung, Y.-S. Cho, H.-C. Kim and D.-M. Kim, 2010. Summer water quality management by ecological modelling in Ulsan Bay. Korean Soc. Mar. Environ. Saf., 16: 1-9.
  28. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A Manual of Biological and Chemical Methods for Seawater Analysis. Publ. Pergamon Press, Oxford: pp. 184.
  29. Riley, G.A., 1942. The relationship of vertical turbulence and spring diatom flowerings. J. mar. Res., 5: 67-87.
  30. Sommer, U., 1985. Comparison between steady-state and non-steady state competition - experiments with natural phytoplankton. Limnol. Oceanogr., 30: 335-346. https://doi.org/10.4319/lo.1985.30.2.0335
  31. Thompson, P.A., P.I. Bonham and K.M. Swadling, 2008. Phytoplankton blooms in the Huon Estuary, Tasmania: top-down or bottom-up control?. J. Plankton Res., 30: 735-753. https://doi.org/10.1093/plankt/fbn044

Cited by

  1. Tidal Influences on Biotic and Abiotic Factors in the Seomjin River Estuary and Gwangyang Bay, Korea vol.41, pp.7, 2018, https://doi.org/10.1007/s12237-018-0404-9
  2. Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.156
  3. 2018년 독도 주변 빈영양 수괴에서 계절별 식물플랑크톤 동태 vol.37, pp.1, 2016, https://doi.org/10.11626/kjeb.2019.37.1.019
  4. Spatio-temporal Distributions of Phytoplankton Community and It’s Variation Characteristics in the Ulsan Coastal Waters, Southern East Sea of Korea vol.22, pp.3, 2019, https://doi.org/10.7846/jkosmee.2019.22.3.159
  5. 독도 연안 식물플랑크톤의 계절적 분포 특성과 환경요인: 2018년과 2019년 비교 vol.38, pp.1, 2016, https://doi.org/10.11626/kjeb.2020.38.1.047
  6. Seasonal Distributions of Phytoplankton and Environmental Factors Generate Algal Blooms in the Taehwa River, South Korea vol.12, pp.12, 2016, https://doi.org/10.3390/w12123329