DOI QR코드

DOI QR Code

The Influences of Additional Nutrients on Phytoplankton Growth and Horizontal Phytoplankton Community Distribution during the Autumn Season in Gwangyang Bay, Korea

가을철 광양만 식물플랑크톤의 수평 분포와 추가 영양염 공급이 식물플랑크톤 성장에 미치는 영향

  • Bae, Si Woo (Korea Institute of Ocean Science and Technology/South Sea Institute) ;
  • Kim, Dongseon (Ocean Circulation and Climate Research, KIOST) ;
  • Kim, Young Ok (Korea Institute of Ocean Science and Technology/South Sea Institute) ;
  • Moon, Chang Ho (Department of Oceanography, Pukyong National University) ;
  • Baek, Seung Ho (Korea Institute of Ocean Science and Technology/South Sea Institute)
  • 배시우 (한국해양과학기술원 남해특성연구부) ;
  • 김동선 (한국해양과학기술원 해양순환 기후연구부) ;
  • 김영옥 (한국해양과학기술원 남해특성연구부) ;
  • 문창호 (국립 부경대학교 해양학과) ;
  • 백승호 (한국해양과학기술원 남해특성연구부)
  • Received : 2014.01.22
  • Accepted : 2014.02.17
  • Published : 2014.03.31

Abstract

In order to estimate the effect of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in 2010 and 2011, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Also, nutrient additional experiments were conducted to assess additional nutrient effects on phytoplankton assemblage using the surface water. In both years, the total nutrients were high at the enclosed inner bay and the mouth of Seomjin River, whereas it was low at the St.15~20 where in influenced by the surface warm water current from offshore of the bay. On the other hand, nano- and pico-sized Chl. a were gradually increased towards the outer bay and their trends were significant in 2011 than in 2010. The cryptophyta species occupied more than 85% of total phytoplankton assembleges in 2010, whereas their abundance in 2011 remainds to be 1/10 levels of 2010. Following the cryptophata species, the diatom Chaetoceros spp. and Skeletonema-like spp. were found to be dominant species. Further the biosaasy experimental results shows that the phytoplankton biomass in the +N and +NP treatments was higher compared to control and +P treatments and its trend was significant at St.8 and St.20 where nutrient concentration were low. Based on the bioassay and field survey, providing the high nutrients may have stimulated to phytoplankton growth such as S. costatum-like spp.. In particular, opportunistic micro-algae such as Cryptomonas spp. were able to achieve the high biomass under the relatively mid nutrient condition from bottom after break down of seasonal stratification in the Gwangyang Bay.

2010년과 2011년 추계 광양만에서 식물플랑크톤 군집구조와 그들의 성장에 미치는 환경요인을 파악하기 위해 만내외측의 19~20개 정점에서 생물학적 요인과 무생물학적 요인을 조사하였다. 또한 식물플랑크톤에 대한 영양염 첨가 효과를 알아보기 위해 2010년 현장 10개 정점의 표층수를 이용하여 생물검정실험을 수행하였다. 2010과 2011년의 영양염 수평적 분포특성은 내만해역I (정점1~9)과 섬진강의 영향을 직간접적으로 받을 수 있는 해역II (정점10~14)에서 상대적으로 높게 나타났고, 해역III (정점15~20)으로 갈수록 점차적으로 감소하여 해역별 차이가 명확하였다. 반면, 크기별로 분획된 Chl. a함량은 영양염농도가 낮은 해역으로 갈수록 극미소(Nano와 Pico)크기의 생물량이 상대적으로 증가하였다. 이와 같은 양상은 2010년보다 2011년이 두드러졌다. 2010년 은편모조류가 대부분의 정점에서 85% 이상으로 우점하였고, 2011년에도 은편모그룹이 전체 식물플랑크톤 군집중 대부분의 정점에서 50% 이상의 높은 비율을 차지하였으나, 2010년의 출현개체수의 1/10 수준에 머물렀다. 은편모그룹 다음으로 높은 비율을 차지한 생물군이 규조류 Chaetoceros spp.와 Skeletonema spp.로 나타났다. 생물검정실험에서는 전 해역에서 N첨가군과 NP첨가군의 효율이 대조군과 P첨가군에 비하여 높았고, 특히 현장 영양염농도가 낮게 기록된 정점8과 20의 NP영양염첨가군에서 약 2배의 높은 효율을 보였다. 결과적으로 광양만에서 추계 갑작스럽게 높은 영양염이 공급될 경우 Skeletonema spp.와 같은 영양염 흡수능이 뛰어난 생물이 우점할 수 있을 것이며, 성층붕괴와 같은 일정량의 지속적인 영양염공급은 세포크기가 작은 기회성 특징을 가진 은편모그룹의 성장에 유리한 조건이라는 것을 알 수 있었다.

Keywords

References

  1. Bae SW, DS Kim, YO Kim, CH Moon and SH Baek. 2014. The influence of nutrients addition on phytoplankton communities between spring and summer season in Gwangyang Bay, Korea. J. Korean Soc. Oceanogr. (The Sea) 19:53-65.
  2. Baek SH and YO Kim. 2010. The study of summer season in Jinhae Bay - short term changes of community structure and horizontal distribution characteristic of phytoplankton. Korean J. Environ. Biol. 28:115-124.
  3. Baek SH, DS Kim, BG Hyun, HW Choi and YO Kim. 2011. Characteristics of horizontal community distribution and nutrient limitation on growth rate of phytoplankton during a winter in Gwangyang Bay, Korea. Ocean Polar Res. 33: 99-111. https://doi.org/10.4217/OPR.2011.33.2.099
  4. Baek SH, KS Shin, BG Hyun, PG Jang, HS Kim and OM Hwang. 2010. Distribution characteristics and community structure of phytoplankton in the different water masses during early summer of southern sea of Korea. Ocean Polar Res. 32:1-13.
  5. Barone R and L Naselli-Flores. 2003. Distribution and seasonal dynamics of Cryptomonads in sicilian water bodies. Hydrobiologia 502:325-329. https://doi.org/10.1023/B:HYDR.0000004290.22289.c2
  6. Cho ES, JB Kim, KH An, J Yu, JN Kwon and CS Jeong. 2006. The clarification of spatial-temporal patterns of phytoplankton from southern Korean coastal waters in 2004. J. Environ. Sci. 15:539-562.
  7. Cho ES, SY Lee, SS Kim and YS Choi. 2007. Marine Environments and ecological characteristics of phytoplankton in southern coastal waters during June to October in 2004- 2006. J. Environ. Sci. 16:941-957.
  8. Claesson A. and A. Forsberg 1978. Algal assay procedure with one or five species. Minitest. Mitt. Verein. Limnol. 21:21-30.
  9. Clay BL, P Kugrens and RE Lee. 1999. A revised classification of Cryptophyta. Bot. J. Linn. Soc. 131:131-151. https://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  10. Conway HL and PJ Harrison. 1997. Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar. Biol. 43:33-43.
  11. Dortch Q and TE Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf. Res. 12:1293-1309. https://doi.org/10.1016/0278-4343(92)90065-R
  12. Dufour P, L Charpy, S Bonnet and N Gracia. 1999. Phytoplankton nutrient control in the oligotrophic south Pacific subtropical gyre(Tuamotu Archipelago). Mar. Ecol. Prog. Ser. 179:285-290. https://doi.org/10.3354/meps179285
  13. Fisher TR, ER Peele, JW Ammerman and LW Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 82:51-63. https://doi.org/10.3354/meps082051
  14. Frost BW. 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36:1616-1630. https://doi.org/10.4319/lo.1991.36.8.1616
  15. Han MS, K Furuya and T Nemoto. 1992. Species-specific productivity of Skeletonema costatum in the inner part of Tokyo Bay. Mar. Ecol. Prog. Ser. 79:267-273.
  16. Huisman J, P van Oostveen and FJ Weissing. 1999. Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol. Oceanogr. 44:1781-1787. https://doi.org/10.4319/lo.1999.44.7.1781
  17. Iriarte A and DA Purdie. 1994. Size distribution of chlorophyll a biomass and primary production in a temperate estuary (Southampton water): the contribution of photosynthetic picoplankton. Mar. Ecol. Prog. Ser. 115:283-297. https://doi.org/10.3354/meps115283
  18. Jang PG, WJ Lee, MC Jang, JD Lee, WJ Lee, M Chang, KC Hwang and KS Shin. 2005. Spatial and temporal distribution of inorganic nutrients and factors controlling their distributions in Gwangyang Bay. Ocean Polar Res. 27:359-379. https://doi.org/10.4217/OPR.2005.27.4.359
  19. Joo HM, JH Lee and SW Jung. 2011. Correlations between cell abundance, bio-volume and chlorophyll a concentration of phytoplankton communities in coastal waters Incheon, Tongyeong and Ulsan of Korea. Korean J. Environ. Biol. 29:312-320.
  20. Justic D, NN Rabalais, RE Turner and Q Dortch. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf. Sci. 40:339-356. https://doi.org/10.1016/S0272-7714(05)80014-9
  21. Kawamiya M, MJ Kishi, MDK Ahmed and T Sugimoto. 1996. Causes and consequences of spring phytoplankton blooms in Otsuchi Bay, Japan. Cont. Shelf. Res. 16:1683-1698. https://doi.org/10.1016/0278-4343(96)00007-6
  22. Kim SY, CH Moon and HJ Cho. 2003. Relationship between dinoflagellate cyst distribution in surface sediments and phytoplankton assemblages from Gwangyang Bay, a southern coastal area of Korea. J. Korean Soc. Oceanogr. (The Sea) 8:111-120.
  23. Klaveness D. 1989. Biology and ecology of the Cryptophyceae: state and challenges. Biol. Oceanogr. 6:257-270.
  24. Kwon KY, CH Kim, CG Kang, CH Moon, MO Park and SR Yang. 2002. Limiting nutrients for phytoplankton growth in the Seomjin River estuary as determined by algal bioassay experiment. J. Korean Fish. Soc. 35:455-462.
  25. Kwon KY, CH Moon and HS Yang. 2001. Behavior of nutrients along the salinity gradients in the Seomjin River estuary. J. Korean Fish. Soc. 34:199-206.
  26. Lee DS. 1999. Characteristics of nutrients distribution in summer and winter in the South Sea. J. Korean Soc. Oceanogr. (The Sea) 4:371-382.
  27. Lee YS, JS Lee, RH Jung, SS Kim, WJ Go, KY Kim and JS Park. 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Korean Soc. Oceanogr. (The Sea) 6:201-210.
  28. Lim DI, IK Um, SK Jeon, JM Yoo and HS Jung. 2003. Physiochemical characteristics of coastal pseudo-estuarine environment fromed during the summer flood season in the south coast of Korea. J. Korean Soc. Oceanogr. (The Sea) 8:151-163.
  29. Marshall HG and R Lacouture. 1986. Seasonal patterns of growth and composition of phytoplankton in the lower Chesapeake Bay and vicinity. Estuar. Coast. Shelf. Sci. 23:115-130. https://doi.org/10.1016/0272-7714(86)90088-0
  30. Mukai T. 1987. Effects of micro-scale in situ environmental gradients concerning water qualities on the structure of the phytoplankton community in a coastal embayment. Estuar. Coast. Shelf. Sci. 25:447-458. https://doi.org/10.1016/0272-7714(87)90036-9
  31. Mulaert K and K Sabbe. 1996. The diatom genus Thalassiosira (Bacillariophyta) in the estuaries of the schelde (Belgium/ The Netherlands) and the Elbe (Germany). Bot. Mar. 39:103-105.
  32. Munawar M, A Mudroch, IF Munawar and RL Thomas. 1983. The impact of sediment-associated contaminants from the Niagara River mouth on various size assemblages of phytoplankton. J. Great Lakes Res. (2):303-313.
  33. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York. 173pp.
  34. Reynold CS. 1984. The Ecology of Freshwater Phytoplankton. Cambridge Univ. Press, Cambridge. 384pp.
  35. Sommer U. 1994. The impact of light intensity and daylenght on silicate and nitrate competition among marine phytoplankton. Limnol. Oceanogr. 39:1680-1688. https://doi.org/10.4319/lo.1994.39.7.1680
  36. Thurman HV and AP Trujillo. 1999. Essentials of Oceanography. Prentice-Hall, Inc. pp.374-375.
  37. Townsend DW, MD Keller, ME Sieracki and SG Ackleson. 1992. Spring phytoplankton blooms in the absence of vertical water column stratification. Nature 360:59-62. https://doi.org/10.1038/360059a0
  38. Yi SH, YS Sin, SR Yang and C Park. 2005. Seasonal characteristics of phytoplankton distribution in Asan Bay. Ocean Polar Res. 27:149-159. https://doi.org/10.4217/OPR.2005.27.2.149
  39. Yoo MH, TY Song, ES Kim and JK Choi. 2007. The characteristics on the spatial and temporal distribution of phytoplankton in western Jinhae Bay, Korea. J. Korean Soc. Oceanogr. (The Sea) 12:305-314.