DOI QR코드

DOI QR Code

Optimum Wattage and Installation Height of Nano-Carbon Fiber Infrared Heating Lamp for Heating Energy Saving in Plug Seedling Production Greenhouse in Winter Season

동절기 공정육묘장의 난방 에너지 절감을 위한 나노탄소섬유적외선 난방등의 적정 전력과 설치 높이

  • Kim, Hye Min (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Young Jin (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Department of Horticulture, Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 김혜민 (경상대학교 대학원 응용생명과학부) ;
  • 김영진 (경상대학교 대학원 응용생명과학부) ;
  • 황승재 (경상대학교 대학원 응용생명과학부)
  • Received : 2016.11.08
  • Accepted : 2016.11.24
  • Published : 2016.12.31

Abstract

The aim of this study was to examine the optimum wattage and installation height using nano-carbon fiber infrared heating lamp (NCFIHL) for heating energy saving and plug seedling production in plug seedling production greenhouse in winter season. NCFIHL of 700 and 900 W was installed over the bed ($1.2{\times}2.4m$) as 0.7, 1.0, and 1.3 m height, respectively, for the production of grafted watermelon seedling in venlo-type glasshouse. Watermelon (Citrullus lanatus (Thunb.) Manst.) 'Jijonggul' and gourd (Lagenaria leucantha Rusby.) 'Sunbongjang' were used as scions and rootstocks, respectively. The scions and rootstocks were grafted by single cotyledon ordinary splice grafting. Light intensity of NCFIHL was below the $1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in all treatment. Spectral distributions of NCFIHL presented mostly infrared area. When outside air temperature was below $10^{\circ}C$, 700 and 900 W NCFIHL installed with 0.7 m height treatment and 900 W NCFIHL installed with 1.0 m height treatment maintained the setting air temperature ($20^{\circ}C$) at night. In the result of taking thermal imaging, the grafted watermelons were getting warm fast in 900 W NCFIHL installed with 0.7 m height treatment at night. Compactness of the grafted watermelons was the greatest in 700 W NCFIHL installed with 1.3 m height treatment. The results indicate that NCFIHL installed above 1.0 m height using 700 W was suitable for production of plug seedling.

동절기에 공정육묘장에서 난방 에너지 절감과 우량묘 생산을 위해 나노탄소섬유적외선 난방등(NCFIHL, nano-carbon fiber infrared heating lamp)의 적정 전력과 설치높이를 구명하는 것이 본 연구의 목적이다. 벤로형 유리온실 내부에 수박 접목묘를 재배하기 위해 700과 900W NCFIHL을 육묘 베드($1.2{\times}2.4m$)에서 0.7, 1.0, 및 1.3m 높이로 각각 설치하였다. 수박(Citrullus lanatus (Thunb.) Manst.) '지존꿀'과 박(Lagenaria leucantha Rusby.) '선봉장'은 각각 접수와 대목으로 사용되었다. 접수와 대목은 편엽합접 방식으로 접목되었다. NCFIHL의 광도는 모든 처리에서 $1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 이하였다. NCFIHL의 광분포는 대부분 적외선 영역에서 나타났다. 외기온도가 $10^{\circ}C$ 이하일 때 700과 900W NCFIHL을 0.7m 높이로 설치한 처리구와 900W NCFIHL을 1.0m 높이로 설치한 처리에서 야간 설정온도($20^{\circ}C$)를 유지하였다. 열화상 촬영에서는 900W NCFIHL을 0.7m 높이로 설치한 처리에서 가장 빨리 식물체의 온도가 올라갔다. Compactness는 700W NCFIHL을 1.3m 높이로 설치한 처리에서 우수하였다. 결과적으로 700W NCFIHL을 1.0m 이상으로 설치하는 것이 바람직하다고 판단된다.

Keywords

References

  1. An, J.U., C.G. An, Y.H. Hwang, H.S. Yoon, Y.H. Chang, G.M. Shon, and B.R. Jeong. 2013. Effect of heating by infrared heating lamps on growth of strawberry and heating cost. Protected Hort. Plant Factory. 22:355-360. https://doi.org/10.12791/KSBEC.2013.22.4.355
  2. Guy, C.L., J.L. Huber, and S.C. Huber. 1992. Sucrose phos-phate synthase and sucrose accumulation at low temperature. Plant Physiol. 100:502-508. https://doi.org/10.1104/pp.100.1.502
  3. Jeong, B.R., S.J. Hwang, and N.J. Kang. 2016. Plug seedling. Gspress, Jinju, Republic of Korea. p. 21 (in Korean).
  4. Kamp, P.G.H. and G.J. Timmerman. 1996. Computerized environmental control in greenhouse. IPC-Plant, The Netherlands. pp. 239-240.
  5. Kim, K.S., Y.S. Kim, Y.H. Kim, K.W. Park, H.Y. Park, J.I. Son, Y.B. Lee, J.S. Lee, C.H. Lee, Y.J. Im. and B.R. Jeong. 2000. Protected horticulture and management. Hyangmunsa, Seocho-gu, Seoul, Republic of Korea. p. 170 (in Korean).
  6. Kim, D.O. and C.S. Choi. 2008. Cause analysis ignited at a far infrared radiation heater. Transactions Korean Institute Fire Sci. Engineering. 22:91-96.
  7. Kim, J.G. and J.O. Yoon. 2013. Unsteady state simulation of surface temperature of ground with solar radiation. Architectural Institute Korea. 33:237-238.
  8. Levitt, J. 1980. Responses of plants to environmental stresses. Vol. 1. Chilling, freezing and high temperature stresses. 2nd ed. Academic Press, New York, USA.
  9. Lim, M.Y., C.H. Ko, M.S. Son, S.B. Lee, G.J. Kim, B.S. Kim, Y.B. Kim, and B.R. Jeong. 2009. Effect of heating by nanocarbon fiber infrared lamps on growth and vase life of cut roses and heating cost. J. Bio-Environ. Con. 18:1-8.
  10. Park, K.S., Y.G. Kang, S.G. Lee, K.C. Seong, and D.K. Park. 2004. Effect of DIF treatment during seedling on height and lateral shoot development of white-spined cucumber (Cucumis satives L.). J. Bio-Environ. Con. 11:154-158.
  11. Pyon, J.Y., S.J. Yun, I.J. Lee, and D.S. Kim. 2014. Crop physiology. Hyangmunsa, Seocho-gu, Seoul, Republic of Korea. p. 197 (in Korean).
  12. Ryu, S.N. and G.S. Kim. 2010. Factors affects the photoperiod of plant, pp. 218-220. In: S.N. Ryu and G.S. Kim (eds.). Principle of cultivation science. Korea National Open Univ. Press, Seoul.