DOI QR코드

DOI QR Code

Hardware Implementation of Binary Arithmetic Decoder in HEVC CABAC Decoder

HEVC CABAC 복호화기의 이진 산술 복호화기 설계

  • Kim, Sohyun (School of Electronic Engineering, Soongsil University) ;
  • Kim, Doohwan (School of Electronic Engineering, Soongsil University) ;
  • Lee, Seongsoo (School of Electronic Engineering, Soongsil University)
  • Received : 2016.12.07
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

HEVC CABAC binary arithmetic decoder operates in three decoding modes i.e. regular, bypass, and termination modes, where their decoding operations and time differ a lot. Furthermore, when renormalization occurs, its internal feedback loop induces large delay. In this paper, a binary arithmetic decoder was designed to solve this problem. In advance, it checks all range values with possible renormalization. When renormalization occurs, it immediately updates range value and finishes all calculation in a cycle. When implemented in 0.18 um process technology, its maximum operating frequency and gate counts are 215 MHz and 5,423 gates, respectively.

HEVC CABAC의 이진 산술 복호화기는 정규, 우회, 종료의 세 가지 복호화 모드에 따라 동작하고 각 모드에 따라 복호화 동작과 시간에 많은 차이가 있다. 또한 재정규화를 진행하게 되면 내부에서 피드백 루프가 발생하여 지연 시간이 길어지게 된다. 본 논문에서는 이를 해결하기 위해 재정규화가 일어날 수 있는 모든 range 값의 범위를 미리 체크하여 정규화가 일어나면 바로 range 값을 업데이트하고 모든 계산을 한 사이클 안에 수행할 수 있도록 설계하였다. 0.18 um 공정에서 구현된 이진 산술 복호화기의 최대 동작 속도는 215 MHz이며 크기는 5,423 게이트이다.

Keywords

References

  1. D. Pham, J. Moon, and S. Lee, "Hardware Implementation of HEVC CABAC Binarizer," j.inst.Korean.electr.electron.eng, vol. 18, no. 3, pp. 356-361, 2014.
  2. D. Pham, J. Moon, D. Kim, and S. Lee, "Hardware Implementation of HEVC CABAC Binary Arithmetic Encoder," j.inst.Korean.electr. electron.eng, vol. 18, no. 4, pp. 630-635, 2014.
  3. D. Kim, J. Moon, and S. Lee, "Hardware Implementation of HEVC CABAC Context Modeler," j.inst.Korean.electr.electron.eng, vol. 19, no. 2, pp. 254-259, 2015.
  4. D. Kim, J. Moon, and S. Lee, "Design of HEVC CABAC Encoder with Parallel Processing of Bypass Bins," j.inst.Korean.electr.electron.eng, vol. 19, no. 4, pp. 583-589, 2015.
  5. D. Kim, S. Kim, and S. Lee, "Hardware Implantation of De-Binarizer in HEVC CABAC Decoder," j.inst.Korean.electr.electron.eng, vol. 20, no. 3, pp. 326-329, 2016.
  6. G. Sullivan, J. Ohm, W Han, T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) Standard," IEEE Trans. Circuits Syst. Video Technol. vol. 22, no. 15, pp. 1649-1668, 2012. https://doi.org/10.1109/TCSVT.2012.2221191
  7. B. Bross, W. Han, J. Ohm, G. Sullivan, and T. Wiegand, "JCTVC-L1003_v34: High efficiency video coding (HEVC) text specification draft 10," Joint Collaborative Team on Video Coding (JCT-VC), 2013.
  8. S. Han, W. Nam, and S. Lee, "Design of Low-Area HEVC Core Transform Architecture," j.inst.Korean.electr.electron.eng, vol. 17, no. 2, pp. 119-128, 2013.
  9. J. Lee and S. Lee, "8x8 HEVC Inverse Core Transform Architecture Using Multiplier Reuse," j.inst.Korean.electr.electron.eng, vol. 17, no. 4, pp. 570-578, 2013.
  10. S. Jung and S. Lee, "Design of Unified HEVC 4x4 IDCT/IDST Block," j.inst.Korean. electr.electron.eng, vol. 19, no. 2, pp. 271-275, 2015.
  11. S. Jung and S. Lee, "Design of Unified HEVC/VP9 4x4 Transform Block," j.inst.Korean. electr.electron.eng, vol. 19, no. 3, pp. 392-399, 2015.
  12. J. Lee and S. Lee, "16x16 HEVC Inverse Core Transform Architecture Using Multiplier Reuse," j.inst.Korean.electr.electron.eng, vol. 19, no. 3, pp. 378-384, 2015.
  13. S. Jung and S. Lee, "Design of Unified Inverse Transformer for HEVC and VP9," j.inst.Korean.electr.electron.eng, vol. 19, no. 4, pp. 596-602, 2015.
  14. A. Hur, T. Park, and S. Lee, "Design of HEVC Motion Estimation Engine with Search Window Data Reuse and Early Termination," j.inst.Korean.electr.electron.eng, vol. 20, no. 3, pp. 273-278, 2016.
  15. HEVC software repository HM-11 reference model, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-11.0-dev/