DOI QR코드

DOI QR Code

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Kwon, Woo Hyun (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Chae, Kwang Pyo (Department of Nano Science and Mechanical Engineering, Nanotechnology Research Center, Konkuk University) ;
  • Lee, Young Bae (Department of Physics, Hanzhong University)
  • Received : 2015.12.09
  • Accepted : 2016.01.21
  • Published : 2016.03.31

Abstract

Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Keywords

References

  1. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990), p. 217.
  2. N. N. Greenwood and T. C. Gibb, Mossbauer spectroscopy, Chapman and Hall Ltd. London (1971), p. 261-266.
  3. V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996). https://doi.org/10.1016/S0304-8853(96)00277-6
  4. T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003). https://doi.org/10.1063/1.1542651
  5. A. S. Albaguergye, J. D. Ardisson and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  6. K. Oda, T. Yoshio, K. Hirata, K. O. Oka and K. Takabashi, J. Jpn. Soc., Powder Powder Metal. 29, 170 (1982). https://doi.org/10.2497/jjspm.29.170
  7. V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993). https://doi.org/10.1016/0304-8853(93)90838-S
  8. J. G. Lee, J. Y. Park and C. S. Kim, J. Mater. Sci. 53, 3965 (1998).
  9. B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978), p. 102.
  10. J. Y. Kang, W. H. Kwon, S. W. Lee, B. S. Kang and K. P. Chae, J. Korean Phys. Soc. 60, 795 (2012). https://doi.org/10.3938/jkps.60.795
  11. P. Didukh, J. M. Grenecheb, A.-S. Waniewska, P. C. Fannin and L. Casas, J. Magn. Magn. Mater. 613, 242 (2002).
  12. C. V.-Aarca, P. Lavela and J. L. Tirado, J. Power Sources 196, 6978 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.101
  13. R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x
  14. M. Z. Schmalzrifd, J. Phys. Chem. 28, 203 (1961).
  15. W. O. Choi, W. H. Kwon, J. G. Lee, B. S. Kang and K. P. Chae, J. Korean Phys. Soc. 61, 1812 (2012). https://doi.org/10.3938/jkps.61.1812
  16. A. S. Albuquerque, J. D. Ardisson and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  17. W. H. Kwon, J. G. Lee, Y. B. Lee and K. P. Chae, J. Magn. 16, 1 (2011). https://doi.org/10.4283/JMAG.2011.16.1.001
  18. M. K. Shobana, S. Sankar and V. Rayendran, Material Chem. Phys. 113, 10 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.083
  19. W. H. Kwon, J. Y. Kang, J. G. Lee, S. W. Lee and K. P. Chae, J. Magn. 15, 159 (2010). https://doi.org/10.4283/JMAG.2010.15.4.159

Cited by

  1. Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.308
  2. Synthesis and magnetic properties of manganese–zinc ferrite nanoparticles obtained via a hydrothermal method vol.28, pp.16, 2017, https://doi.org/10.1007/s10854-017-7043-y
  3. Crystallographic and magnetic properties of the hyperthermia material CoFe2O4@AlFe2O4 vol.70, pp.2, 2017, https://doi.org/10.3938/jkps.70.173
  4. The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method vol.28, pp.7, 2018, https://doi.org/10.3740/MRSK.2018.28.7.371