DOI QR코드

DOI QR Code

Increase of Epigallocatechin in Green Tea Extract by Lactic Acid Bacteria Fermentation

젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대

  • Received : 2015.11.27
  • Accepted : 2016.01.26
  • Published : 2016.03.28

Abstract

Hydrolytic enzyme activities, including those of ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, and ${\beta}$-arabinopyranosidase, which are useful for bioconversion, were explored in lactic acid bacteria isolated from Korean traditional fermented foods. Nine bacterial strains were selected for the fermentation of green tea extract prepared by supercritical fluid extraction. Changes in the concentrations of catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate in green tea extract were investigated after fermentation by the selected lactic acid bacteria strains. The strain Leuconostoc mesenteroides MBE1424, which showed the highest ${\beta}$-glucuronidase enzyme activity among the tested bacterial strains, increased the epigallocatechin content of the green tea extract by 60%. In addition, L. mesenteroides MBE1424 was more resistant than the control strain at high temperature and showed a maximum specific growth rate at $40^{\circ}C$. L. mesenteroides MBE1424 was presumed to have an enzyme system containing ${\beta}$-glucuronidase with utility in the bioconversion of green tea extract.

전통발효 식품으로부터 젖산균을 분리하고, ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, ${\beta}$-arabinopyranosidase 등 생물전환과 관련된 유용 효소활성을 조사하였다. 효소활성 평가를 통하여 선발된 9점의 젖산균 발효에 의한 epigallocatechin-3-gallate(EGCG), epigallocatechin(EGC), epicatechin gallate(ECG), 및 epicatechin(EC)의 함량 변화를 조사하였다. 배추 김치에서 분리된 Leuconostoc mesenteroides MBE1424로 명명된 균주는 발효에 의하여 카테킨 중 EGC의 함량을 약 60% 증가시켰으며, 배양온도 $40^{\circ}C$에서 가장 우수한 비성장속도를 나타내어 기존에 보고된 균주보다 상대적으로 내열성이 우수한 것으로 판단되었다. Leuconostoc mesenteroides 균주는 녹차 추출물의 생물전환에 필요한 유용한 효소계를 보유하고 있는 것으로 추정되었다.

Keywords

References

  1. Ahn JE, Kim JK, Lee HR, Eom HJ, Han NS. 2012. Isolation and characterization of a bacteriocin-producing Lactobacillus sakei B16 from Kimchi. J. Korean Soc. Food Sci. Nutr. 41: 721−726. https://doi.org/10.3746/jkfn.2012.41.5.721
  2. Amin HAS, El-Menoufy HA, El-Mehalawy AA, Mostafa ES. 2011. Biosynthesis of glycyrrhetinic acid 3-O-mono-β-D-glucuronide by free and immobilized Aspergillus terreus β-D-glucuronidase. J. Mol. Catal. B. Enzym. 69: 54−59. https://doi.org/10.1016/j.molcatb.2010.12.010
  3. Beggs WH, Rogers P. 1966. Galactose repression of β-galactosidase induction in Escherichia coli. J. Bacteriol. 91: 1869−1874.
  4. Bursill CA, Abbey M, Roach PD. 2007. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis 193: 86−93. https://doi.org/10.1016/j.atherosclerosis.2006.08.033
  5. Choi SY, Jung BM, Kim HJ, Seong SH, Kim WJ, Park WS. 2000. Extracellular enzyme activities of the lactic acid bacteria isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 28: 59−61.
  6. Chung YH, Shin MK. 2005. A study on the physicochemical properties of korean teas according to degree of fermentation. Korean J. Food & Nutr. 18: 944−101.
  7. Elisa T, Maurizio LG, Santo G, Danila DM, Marco G. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104: 466−479. https://doi.org/10.1016/j.foodchem.2006.11.054
  8. Gamero A, Manzanares P, Querol A, Belloch C. 2011. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. Int. J. Food Microbiol. 145: 92−97. https://doi.org/10.1016/j.ijfoodmicro.2010.11.034
  9. Gottschalk TE, Nielsen JE, Rasmussen P. 1996. Detection of endogenous β-glucuronidase activity in Aspergillus niger. Appl. Microbiol. Biotechnol. 45: 240−244. https://doi.org/10.1007/s002530050677
  10. Han SK, Song YS, Lee JS, Bang JK, Suh SJ, Cho JY, et al. 2010. Changes of the chemical constituents and antioxidant activity during microbial-fermented tea (Camellia sinensis L.) processing. Korean J. Food Sci. Technol. 42: 21−26.
  11. Jang MH, Kim MD. 2010. Exploration of β-glucosidase activity of lactic acid bacteria isolated from kimchi. Food Eng. Prog. 14: 243−248.
  12. Jang MH, Kim MD. 2011. β-1,4-xylosidase activity of Leuconostoc lactic acid bacteria isolated from Kimchi. Korean J. Food Sci. Technol. 43: 169−175. https://doi.org/10.9721/KJFST.2011.43.2.169
  13. Jin HS, Kim JB, Tun TJ, Lee KJ. 2008. Selection of Kimchi starters based on the microbial composition of Kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671−675. https://doi.org/10.3746/jkfn.2008.37.5.671
  14. Kim HS, Kim JY, Park MS, Zheng H, Ji GE. 2009. Cloning and expression of β-glucuronidase from Lactobacillus brevis in E. coli and application in the bioconversion of baicalin and wogonoside. J. Microbiol. Biotechnol. 19: 1650−1655. https://doi.org/10.4014/jmb.0904.04053
  15. Kim JI, Row KH. 2001. Recovery of catechin compound from korean green tea by solvent extraction and partition. Korean J. Biotechnol. Bioeng. 16: 442−445.
  16. Koo YC, Lee HS, Park BG, Kim EJ, Lee SJ, Kim KH, et al. 2006. Chromosome aberration test of water extract of decaffeined green tea using supercritical carbon dioxide with mannalian cell line. Env. Mutagens Carcinogens 26: 63−68.
  17. Lucien FP, Foster NR. 2000. Solubilities of solid mixtures in supercritical carbon dioxide: a review. J. Supercritical Fluids 17: 111−134. https://doi.org/10.1016/S0896-8446(99)00048-0
  18. Marcolongo L, Ionata E, La Cara F, Amore A, Giacobbe S, Pepe O, Faraco V. 2014. The effect of pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion. Fungal Genet. Biol. 72: 162−167. https://doi.org/10.1016/j.fgb.2014.07.003
  19. McCleary BV, McKie VA, Draga A, Rooney E, Mangan D, Larkin J. 2015. Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydr. Res. 407: 79−96. https://doi.org/10.1016/j.carres.2015.01.017
  20. Oh JH, Kim EH, Kim JL, Moon YI, Kang YH, Kang JS. 2004. Study on antioxidant potency of green tea by DPPH method. J. Korean Soc. Food Sci. Nutr. 33: 1079−1084. https://doi.org/10.3746/jkfn.2004.33.7.1079
  21. Park CD, Jung HK, Park CH, Jung YS, Hong JH, Ko HS, et al. 2012. Isolation of citrus peel flavonoid bioconversion microorganism and inhibitory effect on the oxidative damage in pancreatic beta cells. Korean Soc. Biotechnol. Bioeng. J. 27: 67−74.
  22. Park CD, Jung HK, Park HH, Hong JH. 2007. Identification and fermentation characteristics of lactic acid bacteria isolated form Hahyangju nuruk. Korean J. Food Preserv. 14: 188−193.
  23. Park SB, Han BK, Oh YJ, Lee SJ, Cha SK, Park YS, Choi HJ. 2012. Bioconversion of green tea extract using lactic acid bacteria. Food Eng. Prog. 16: 26−32.
  24. Ra YJ, Lee YW, Kim JD, Row KH. 2001. Supericritical fluid extraction of catechin compounds from green tea. Korean J. Biotechnol. Bioeng. 16: 327−331.
  25. Rasheed A, Haider M. 1998. Antibacterial activity of Camellia sinensis extracts against dental caries. Arch. Pharm. Res. 21: 348−352. https://doi.org/10.1007/BF02975300
  26. Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, et al. 2009. Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res. Microbiol. 160: 775−784. https://doi.org/10.1016/j.resmic.2009.09.004
  27. Ryu OH, Lee J, Lee KW, Kim HY, Seo JA, Kim SG, et al. 2006. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res. Clin. Pract. 71: 356−358. https://doi.org/10.1016/j.diabres.2005.08.001
  28. Sá-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957−969. https://doi.org/10.1099/00221287-143-3-957
  29. Sears KD, Casebier RL, Hergert HL. 1974. The structure of catechinic acid. A base rearrangement product of catechin. J. Org. Chem. 39: 3244−3247. https://doi.org/10.1021/jo00936a015
  30. Shim KS, Park GG, Park YS. 2014. Bioconversion of puffed red ginseng extract using β-glucosidase-producing lactic acid bacteria. Food Eng. Prog. 18: 332−340. https://doi.org/10.13050/foodengprog.2014.18.4.332
  31. Shin HY, Park SY, Sung JH, Kim DH. 2003. Purification and characterization of α-L-arabinopyranosidase and α-L-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl. Environ. Microbiol. 69: 7116−7123. https://doi.org/10.1128/AEM.69.12.7116-7123.2003
  32. So MH, Lee YS. 1997. Influences of cultural temperature on growth rates of lactic acid bacteria isolated from kimchi. Korean J. Food Nutr. 10: 110−116.
  33. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, et al. 1999. Green tea and cancer chemoprevention. Mutat. Res. 428: 339−344. https://doi.org/10.1016/S1383-5742(99)00059-9
  34. Uesaka E, Sato M, Raiju M, Kaji A. 1978. α-L-Arabinofuranosidase from Rhodotorula flava. J. Bacteriol. 133: 1073−1077.
  35. Yang MC, Kim DS, Jeong, SW, Ma JY. 2011. Bioconversion constituents of galgeun-tang fermented by Lactobacillus plantarum. J. Korean J. Medicinal Crop. Sci. 19: 446-455. https://doi.org/10.7783/KJMCS.2011.19.6.446
  36. Yoo SK, Hur SS, Song SH, Kim KM, Whang KS. 2005. Optimizatin of mannitol fermentation by Leuconostoc mesenteroides sp. strain JFY. J. Life Sci. 15: 374−381. https://doi.org/10.5352/JLS.2005.15.3.374

Cited by

  1. Bioconversion of glycosides isoflavones to aglycone isoflavones by Lactobacillus rhamnosus BHN-LAB 76 under anaerobic conditions vol.26, pp.2, 2016, https://doi.org/10.11002/kjfp.2019.26.2.148