DOI QR코드

DOI QR Code

Characteristics of Thermal Variations with the Different Land Covers in an Urban Area

도시 지역에서 토지 피복에 따른 열 변이 특성

  • Park, Sung-Ae (Natural Environment Research Division, National Institute Environmental Research) ;
  • Kong, Hak-Yang (Natural Environment Research Division, National Institute Environmental Research) ;
  • Kim, Seung-Hyun (Natural Environment Research Division, National Institute Environmental Research) ;
  • Park, Sungmin (Natural Environment Research Division, National Institute Environmental Research) ;
  • Shin, Young-Kyu (Natural Environment Research Division, National Institute Environmental Research)
  • 박성애 (국립환경과학원 자연환경연구과) ;
  • 공학양 (국립환경과학원 자연환경연구과) ;
  • 김승현 (국립환경과학원 자연환경연구과) ;
  • 박성민 (국립환경과학원 자연환경연구과) ;
  • 신영규 (국립환경과학원 자연환경연구과)
  • Received : 2016.03.04
  • Accepted : 2016.03.20
  • Published : 2016.03.31

Abstract

This study was conducted to analyze the effect of the different land covers of an urban park (Hyowon park) in downtown Suwon on the urban thermal variations during a hot summer. The effect of the air temperature reduction in the urban park was 4.4%-4.5% for the downtown residence (Maetan-dong). This value was about 0.8% lower than that of the outskirts residence (Sanggwanggyo-dong). The daily mean temperature, daily maximum temperature, summer day and heat wave frequency were measured under the different land covers (cement-block, grass, pine-grass, shading area and mixed forest) showed these values generally decreased under natural land cover types. Daily minimum temperature and tropical night frequency didn't seem to correlate with the land cover types. Means of thermal comfort indices (wet bulb globe temperature, heat index and discomfort index) in the shading area, mixed forest and the pine-grass types were lower than those of cement block and grass types. However the levels of those indices were equal to 'very high' or 'caution' levels in the afternoon (13:00-15:00). In the morning (06:00-08:00), thermal comfort indices of the urban park didn't correlate with land cover types. Therefore, to reduce heat stress and to improve the thermal comfort in urban parks, an increase in the area of natural land cover such as grass, forest and open spaces is required.

본 연구는 수원시 도심에 위치한 도시공원인 효원공원을 대상으로 여름철 대기온도 저감효과를 확인하고, 공원을 구성하는 서로 다른 피복유형별 특성을 파악하기 위하여 열 환경을 실측하고 분석하였다. 도시공원의 여름철 대기온도저감효과는 도심주거지 (매탄동) 대비 평균 4.4-4.5%로 통계적으로 유의하였고 (p< 0.001), 수원시의 외곽주거지 (상광교동) 보다는 약 0.8% 낮은 수준이었다. 도시공원 내 피복유형 (보도 블럭, 잔디 식재지, 소나무-잔디 식재지, 수목 차광지 및 혼합림 조경지)에 따른 열환경은 자연소재의 유형일수록 일평균기온, 일최고기온, 여름일수가 낮은 경향을 보였다. 그러나, 일최저기온 및 열대야일수는 피복유형에 따른 상관관계가 뚜렷하게 나타나지 않았다. 오후시간대 (13:00-15:00)에 혼합림 조경지, 수목 차광지, 소나무-잔디 식재지의 불쾌지수 (DI), 습구흑구온도 (WBGT) 및 열지수 (HI)의 평균값이 보도 블록과 잔디 식재지보다 낮아서 자연소재의 피복 유형의 열쾌적성이 양호한 것으로 나타났다. 그러나 각 지수에 대한 등급은 모든 피복 유형에서 '가장 높음' 또는 '주의' 단계로 동일하였다. 한편 오전 (06:00-08:00)에는 토지 피복유형별 열쾌적성에 차이가 없었다. 결론적으로 도시에서 열 환경을 개선하기 위하여는 초지, 숲 및 개방 지역의 토지 피복 유형을 증가하여야 한다.

Keywords

References

  1. ACSM (American College of Sports Medicine). 1984. Prevention of thermal injuries during distance running. Medicine & Science in Sports & Exercise 16: iv-xiv.
  2. Eliasson, I. 2000. The use of climate knowledge in urban planning. Landscape and Urban Planning 48: 31-44. https://doi.org/10.1016/S0169-2046(00)00034-7
  3. Hiroshi, S. 1971. Urban desert (different types on local climate - 20). Kokonshoin 16(8): 10. (in Japanese)
  4. ISO. 1989. ISO7243, Hot Environments - Estimation of the Heat Stress on Working Man, Based on the WBGT-index (Wet Bulb Globe Temperature). International Organization of Standardization. Geneva, Switzerland.
  5. Jung, I.S., Choi, D.H. and Lee, B.Y. 2011. Observation study of thermal characteristics by distribution ratio of green area at urban in summer season. Journal of the Korean Solar Energy Society 31(3): 8-16. (in Korean) https://doi.org/10.7836/kses.2011.31.3.008
  6. Jung, A.R. 2011. A study on the realization of allteglichkeit in Seoul urban parks. Master Thesis, Sungkyunkwan University, Suwon, Korea. (in Korean)
  7. Kim, H. 2003. The impacts of urban environmental factors on air temperatures in Seoul. Journal of Korea Planning Association 38(5): 259-269. (in Korean)
  8. Kim, Y.J., Kim, H.S., Kim, Y.K., Kim, J.K. and Kim, Y.M. 2014. Evaluation of thermal environments during the heat waves of summer 2013 in Busan metropolitan area. Journal of Environmental Science International 23: 1929-1941. (in Korean) https://doi.org/10.5322/JESI.2014.23.11.1929
  9. Korean Earth Science Society. 2009. Dictionary of Earth Science. Bookshill, Seoul, Korea. (in Korean)
  10. Landsberg H. E. 1981. Urban Climate. Academic Press, New York, USA.
  11. Lee, J.A., Jung, D.Y., Chon, J.H., Lee, S.M. and Song, Y.B. 2010. An evaluation of human thermal comfort and improvement of thermal environment by spatial structure. Journal of the Korea Institute of Landscape Architecture 38(5): 12-20. (in Korean)
  12. Lee, S., Kwon, B.Y., Jung, D., Jo, K. Kim, M., Ha, S., Kim, H., Kim, B.N., Masud, M.A., Lee, E. and Kim, Y. 2013. Future prediction of heat and discomfort indices based on two RCP Scenarios. Atmosphere, Korean Meteorological Society 23(2): 221-229. (in Korean)
  13. NOAA. 2005. Heat wave: a major summer killer. National Oceanic and Atmospheric Administration, USA. http://www.nws.noaa.gov/om/brochures/heatwave.pdf. Assessed 15 January 2016.
  14. Park, S.K. 2012. Landscape planning and design methods with human thermal sensation. Journal of the Korea Institute of Landscape Architecture 40(1): 1-11. (in Korean)
  15. Shashua-Bar, L. and Hoffman, M.E. 2000. Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings 31(3): 221-235. https://doi.org/10.1016/S0378-7788(99)00018-3
  16. Song, B.G. and Park, H. 2013. Air ventilation evaluation at nighttime for the construction of wind corridor in urban area. Journal of the Korean Association of Geographic Information Studies 16(2): 16-29. (in Korean) https://doi.org/10.11108/kagis.2013.16.2.016
  17. Sung, H.C., Seo, J.Y., Lee, Y.G., Kang, D.I., Hwang, S.Y. and Lee, Y.J. 2009. User-driven Urban Park Development Plan. Gyeonggi Research Institute, Suwon, Korea. (in Korean)
  18. Thom, E.C. 1959. The discomfort index. Weatherwise 12(2): 57-61. https://doi.org/10.1080/00431672.1959.9926960
  19. Yoon, Y.H., Park, B.J., Kim, W.T. and Park, S.Y. 2008. Factor analysis of the relation between land cover ratio of green spaces and temperature. Journal of the Environmental Sciences 17: 485-491. (in Korean) https://doi.org/10.5322/JES.2008.17.5.485
  20. Yoon, Y., Yorikazu, M. and Shigeto, Y. 1997. A study on the relevancy of land coverage condition to air temperature and relative humidity distribution in park. Papers Environmental Information Science 11: 19-24. (in Japanese)
  21. Yoon, Y.H., Park, S.H., Kim, W.T. and Kim, J.H. 2014. Analyses on comparison of UTCI, PMV, WBGT between playground and green space in school. Korean Journal of Environment and Ecology 28: 80-89. (in Korean) https://doi.org/10.13047/KJEE.2014.28.1.80
  22. Yoshino, M.M. 1981. Change of air temperature distribution due to the urbanization in Tokyo and its surrounding regions. Science reports of the Institute of Geoscience, University of Tsukuba. Section A, Geographical Sciences 2: 45-60.
  23. Yu, C. and Hien, W.N. 2006. Thermal benefits of city parks. Energy and Buildings 38: 105-120. https://doi.org/10.1016/j.enbuild.2005.04.003

Cited by

  1. 도심 하천 복원에 따른 주변지역 열환경 변화 특성 분석 vol.28, pp.2, 2019, https://doi.org/10.5322/jesi.2019.28.2.235
  2. Evaluating the Accuracies of the WBGT Estimation Models and their Onsite Applicability in Korea vol.19, pp.4, 2019, https://doi.org/10.9798/kosham.2019.19.4.53