DOI QR코드

DOI QR Code

A Study on the Effects of Airborne LiDAR Data-Based DEM-Generating Techniques on the Quality of the Final Products for Forest Areas - Focusing on GroundFilter and GridsurfaceCreate in FUSION Software -

항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한 연구 - FUSION Software의 GroundFilter 및 GridsurfaceCreate 알고리즘을 중심으로 -

  • PARK, Joo-Won (School of Forestry and Landscape Architecture, Kyungpook National University) ;
  • CHOI, Hyung-Tae (Division of Forest Restoration, National Institute of Forest Science) ;
  • CHO, Seung-Wan (School of Forestry and Landscape Architecture, Kyungpook National University)
  • 박주원 (경북대학교 산림과학.조경학부) ;
  • 최형태 (국립산림과학원 산림복원연구과) ;
  • 조승완 (경북대학교 산림과학.조경학부)
  • Received : 2016.02.21
  • Accepted : 2016.03.26
  • Published : 2016.03.31

Abstract

This study aims to contribute to better understanding the effects of the changes in the parameter values of GroundFilter algorithm(GF), which performs filtering process, and of GridsurfaceCreate algorithm(GC), which creates regular grid, provided in Fusion software on the accuracy of elevation of the final LiDAR-DEM products through comparative analysis. In order to test whether there are significant effects on the accuracy of the final LiDAR-DEM products due to the changes of GF(1, 3, 5, 7, 9) parameter levels and GC(1, 3, 5, 7, 9) parameter levels, two-way ANOVA is conducted based on residuals. The residuals are calculated using the differences between each sample plot's paired field-measured and DEM-derived elevation values given each individual GF and GC level. After that, Tukey HSD test is conducted as a post hoc test for grouping the levels. As a result of two-way ANOVA test, it is found that the change in the GF levels significantly affects the accuracy of LiDAR-DEM elevations(F-value : 27.340, p < 0.01), while the change in the GC levels does not significantly affect the accuracy of LiDAR-DEM elevations(F-value : 0.457). It is also found that the interaction effect between GF and GC levels is not likely to exist(F-value : 0.247). From the results of the Tukey HSD test in the GF levels, GF levels can be divided into two groups('7', '5', '9', '3' vs '1') by the differences of means of residuals. Given the current conditions, LiDAR-DEM can achieve the best accuracy when the level '7' and '3' are given as GF and GC level, respectively.

본 연구는 항공 LiDAR 원자료를 활용하여 Fusion 소프트웨어의 필터링 과정을 수행하는 GroundFilter(GF) 알고리즘과 격자화 과정을 수행하는 GridsurfaceCreate(GC) 알고리즘의 패러미터 수준의 조합 변화에 따라 해발고도 정확도에 어떠한 영향을 미치는지에 대하여 비교분석하였다. GF 패러미터(1, 3, 5, 7, 9) 및 GC 패러미터(1, 3, 5, 7, 9)의 조합 변화에 따른 해발고도 정확도에 대하여 유의미한 영향이 있는지 분석하기 위해 DEM과 현장 해발고도의 잔차로 이원분산분석을 실시하고, Tukey HSD 사후분석을 실시하였다. 이원분산분석 결과, GF 패러미터 변화는 정확도에 유의미한 영향을 미쳤으나(F-value : 27.340, p<0.01), GC 패러미터의 수준 변화는 유의미한 영향이 없었다(F-value : 0.457). 아울러 GF와 GC의 상호작용효과는 정확도에 대하여 유의미한 영향이 없는 것으로 나타났다(F-value : 0.247). 유의미한 영향이 나타난 GF에 대하여 사후분석을 실시한 결과, 잔차들의 평균 차이에 따라 '7', '5', '9', '3' 집단과 '1' 의 두 집단으로 나뉘었다. 또한 보다 신뢰성 있는 해발고도 정보를 제공하는 항공 LiDAR-DEM을 생성하는데 적정 GF 및 GC 패러미터는 각각 수준 '7', '3' 인 조건일 때로 판단되었다.

Keywords

References

  1. Baltsavias, E.P. 1999. Airborne laser scanning : existing systems and firms and other resources. ISPRS Journal of Photogrammetry and Remote Sensing 54(2):164-198. https://doi.org/10.1016/S0924-2716(99)00016-7
  2. Bright, B.C., J.A. Hicke and A.T. Hudak. 2012. Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment 124:270-281. https://doi.org/10.1016/j.rse.2012.05.016
  3. Choi, Y.W. and G.S. Cho. 2005. DEM extraction from LiDAR DSM of urban area. Journal of the Korean society for geo-spatial information system 13(1): 19-25 (최연웅, 조기성. 2005. 도시지역 LiDAR DSM으로부터 DEM추출기법 연구. 한국지형공간정보학회지 13(1):19-25).
  4. Edson, C. and M.G. Wing. 2011. Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements. Remote Sensing 3(11):2494-2528. https://doi.org/10.3390/rs3112494
  5. Erdody, T.L. and L.M. Moskal. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114(4):725-737. https://doi.org/10.1016/j.rse.2009.11.002
  6. Hwang, Y.J. 2006. Application of geographic database for prediction of flood vulnerable area. Journal of The Korean Association of Regional Geographers 12(1):172-178 (황유정. 2006. 홍수에 의한 침수 취약지역 예측에 관한 연구. 한국지역지리학회지 12(1):172-178).
  7. Jang, A.J. and H.T. Kim. 2008. Study of biomass estimation in forest by aerial photograph and LiDAR data. Journal of the Korean Association of Geographic Information Studies 11(3):166-173 (장안진, 김형태. 2008. 항공사진과 Lidar 데이터를 이용한 산림지역의 바이오매스 추정에 관한 연구. 한국지리정보학회지 11(3):166-173).
  8. Kang, J.M., H.C. Yoon, C.B. Lee and J.K. Park. 2006. Accuracy assessment of LiDAR DEM using GPS. Journal of the Korean Society of Survey, Geodesy, Photogrammetry and Cartography 24(5): 443-451 (강준묵, 윤희천, 이창복, 박준규. 2006. GPS에 의한 LiDAR DEM의 정확도 평가. 한국측량학회지 24(5):443-451).
  9. Kim, J.I., C.H. Yeo and S.H. Park. 2007. Evaluating the urban growth restriction function of the greenbelt and its implications for urban growth management. Journal of Korea Planning Association 42(3):63-75 (김재익, 여창환, 박선형. 2007. 개발제한구역의 개발가능지 분석과 도시성장관리에 대한 시사점. 국토계획 42(3):63-75).
  10. Ko, S.M., S.W. Lee, C.Y. Yune and G.H. Kim. 2014. Topographic analysis of landslides in Umyeonsan. Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography 32 (1):55-62 (고석민, 이승우, 윤찬영, 김기홍. 2014. 우면산 산사태 발생 지점의 지형 분석. 한국측량학회지 32(1):55-62). https://doi.org/10.7848/ksgpc.2014.32.1.55
  11. Kobler, A., N. Pfeifer, P. Ogrinc, L. Todorovski, K. Ostir and S. Dzeroski. 2007. Repetitive interpolation: a robust algorithm for DTM generation from aerial laser scanner data in forested terrain. Remote Sensing of Environment 108(1):9-23. https://doi.org/10.1016/j.rse.2006.10.013
  12. Kornus, W., R. Alamús, A. Ruiz and J. Talaya. 2006. DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration. ISPRS Journal of Photogrammetry and Remote Sensing 60(3):147-159. https://doi.org/10.1016/j.isprsjprs.2005.12.004
  13. Kraus, K. and N. Pfeifer. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53(4):193-203. https://doi.org/10.1016/S0924-2716(98)00009-4
  14. Lee, G.S., D.K. Koh and W.G. Kim. 2004. Efficient construction method of topographic data for flood mapping using digital map. Journal of the Korean Association of Geographic Information Studies 7(1):52-61 (이근상, 고덕구, 김우구. 2004. 수치지형도를 활용한 홍수지도 제작용 지형자료의 효과적인 구축방법 연구. 한국지리정보학회지 7(1):52- 61).
  15. Lee, J.O., H.W. Choi, B.Y. Yun and C.Y. Park. 2014. Integrated geospatial information construction of ocean and terrain using multibeam echo sounder data and airborne Lidar data. Journal of the Korean Association of Geographic Information Studies 17(4):28-39 (이재원, 최혜원, 윤부열, 박치영. 2014. 항공 Lidar와 멀티빔 음향측심 자료를 이용한 해상과 육상의 통합 지형공간정보 구축. 한국지리정보학회지 17(4)28-39). https://doi.org/10.11108/kagis.2014.17.4.028
  16. Lillesand, T., R.W. Kiefer and J. Chipman. 2007. Remote Sensing and Image Interpretation. John Wiley and Sons. pp.714-716.
  17. McGaughey R.J. 2015. Fusion/LDV : Software for LiDAR Data Analysis and Visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Seattle, W.A., USA, pp.1-175.
  18. National Geographic Information Institute. 2013. Public surveying regulations. http://www.chcnav.com/index.php/Home/art icle/detailPage/parentID/1462/cat_id/146 3/artID/527.

Cited by

  1. Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W vol.19, pp.4, 2016, https://doi.org/10.11108/kagis.2016.19.4.169
  2. 항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 - vol.20, pp.3, 2016, https://doi.org/10.11108/kagis.2017.20.3.181
  3. 산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구 vol.106, pp.3, 2016, https://doi.org/10.14578/jkfs.2017.106.3.320