DOI QR코드

DOI QR Code

서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan

  • 원호연 (국립생태원 생태기반연구실) ;
  • 김덕기 (국립생태원 생태보전연구실) ;
  • 한아름 (국립생태원 생태기반연구실) ;
  • 이영상 (공주대학교 생물학과) ;
  • 문형태 (공주대학교 생물학과)
  • Won, Ho-Yeon (Division of basic Ecology, National Institute of Ecology) ;
  • Kim, Deok-Ki (Division of Ecological Conservation, National Institute of Ecology) ;
  • Han, Areum (Division of basic Ecology, National Institute of Ecology) ;
  • Lee, Young-Sang (Dept. of Biology, Kongju National Univ.) ;
  • Mun, Hyeong-Tae (Dept. of Biology, Kongju National Univ.)
  • 투고 : 2016.01.25
  • 심사 : 2016.02.26
  • 발행 : 2016.04.29

초록

충남 서산에 위치한 금강산 내 신갈나무림과 소나무림의 유기탄소 흡수량의 비교를 위해 2013년 9월부터 2014년 8월까지 지상부와 지하부 생물량, 낙엽생산량, 낙엽층의 낙엽량, 그리고 토양의 유기탄소 분포량, 토양호흡량을 측정하였다. 지상부와 지하부 생물량에 분포하고 있는 유기탄소의 양은 신갈나무림과 소나무림에서 각각 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$이었으며, 임상낙엽층에 각각 4.89, $6.02ton\;C\;ha^{-1}$, 토양층에 각각 132.78, $59.72ton\;C\;ha^{-1}$ 50cm-depth가 분포하여 신갈나무림과 소나무림의 전체 유기탄소량은 281.52, $108.69ton\;C\;ha^{-1}$으로 나타났다. 본 조사지소 신갈나무림과 소나무림에서 연간 광합성을 통하여 식물체에 고정된 유기탄소량은 각각 10.64, $3.64ton\;C\;ha^{-1}$이었으며, 낙엽생산을 통해 임상으로 유입되는 유기탄소량은 신갈나무림과 소나무림에서 각각 2.83, $2.20ton\;C\;ha^{-1}$ 으로 나타났다. 토양호흡을 통하여 방출되는 유기탄소량은 신갈나무림과 소나무림에서 각각 9.77, $5.54ton\;C\;ha^{-1}$ 이었으며, 유기탄소 순생산량과 미생물호흡량의 차이로 추정했을 때 본 신갈나무림과 소나무림에서 연간 대기로부터 순 흡수하는 유기탄소는 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ 로 나타나 신갈나무림의 유기탄소 흡수량이 소나무림에 비해 현저히 높은 것으로 나타났다.

Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

키워드

참고문헌

  1. Armson, K.A.(1977) Forest Soils: Properties and processes. University of Toronto Press, Toronto, 390pp.
  2. Arnold, R.W.(1995) Role of soil survey in obtaining a global carbon budget. In: Lal, R., J. Kimble, E. Levine and B.A. Stewart(ed.) Soils and Global Change, pp. 257-263.
  3. Black, C.A.(1965) Methods of soil analysis, Part 2. American Society of Agronomy, Inc., Madison, Wisconsin, pp. 1562-1565.
  4. Choi, H.J., I.Y. Jeon, C.H. Shin and H.T. Mun(2006) Soil properties of Quercus variabilis forest on Youngha valley in Mt. Worak National Park. J Ecol Field Biology 29: 439-443.
  5. Eswaran, H., E. Van den Berg, P. Reich and J. Kimble(1995) Global soil carbon resources. In: Lal, R., J.M. Kimble, E. Levine and B.A. Stewart(ed.) Soils and Global Change, CRC-Press, pp. 27-44.
  6. Grigal, D., F. Ohmann, L., F(1992) Carbon storage in upland forests of the Lake States. Soil Sci. Am. J. 56: 935-945. https://doi.org/10.2136/sssaj1992.03615995005600030042x
  7. Han,Y.(2002) Carbon cycle modelling by litter decomposition rate and estimation of carbon dioxide budget in Quercus mongolica Forest at Mt. Songni National Park. Ph.D. Thesis, Chungbuk Nationaal University, 207pp
  8. Hanson, P.J., N.T. Edwards, C.T. Garten and J.A. Andrews(2000) Separation root and soil microbial contributions to soil respiration: A review of methods and observation. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  9. Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver, G.M. Woodwell(1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of $CO_2$ to the atmosphere. Ecol. Monogr. 53: 235-262. https://doi.org/10.2307/1942531
  10. Hwang, J.H and Y.H. Son(2002) Effects of thinning , liming and litter layer treatments on Soil $CO_2$ efflux and litter decay in Pinus rigida and Larix leptolepis plantations Kor. For. Soc. 91(4): 471-479.(in Korean with English abstract)
  11. Hwang J.H., S.W. Bae, K.J. Lee, K.S. Lee, H.S. Kim(2008) Short-term effect of thinning on aboveground carbon storage in Korean pine(Pinus koraiensis) plantation. Kor. For. Soc. 97(6): 605-610.(in Korean with English abstract)
  12. IPCC(2007) Climate Change 2007: Synthesis report. Contribution of working group I, II and III to the Fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, 104pp.
  13. Jo H.K and G.S Han(1999). Case of Chunchon = Comparison of soil characteristics and carbon storage between urban and natural lands. J. of Forest Science. 15: 71-76.(in Korean with English abstract)
  14. Johnson, F.L., P.G. Risser(1974) Biomass, annual net primary production and dynamics of six mineral elements in a post oak-blackjack oak forest. Ecology 55: 1246-1258 https://doi.org/10.2307/1935453
  15. Kang, S.J. and A.K. Kwak(1998) Comparisons of phytomass and productivity of watershed forest by allometry in South Han River. J. Kor. For. En. 17(1): 8-22.
  16. Kimmins, J.P.(1987) Forest Ecology. MacMillan Publishing Company, New York, 531pp.
  17. Lee, K.J. and H.T. Mun(2005) Organic carbon distribution in an oak forest. Kor. J. Ecol. 28(5): 265-270.(in Korean with English abstract) https://doi.org/10.5141/JEFB.2005.28.5.265
  18. Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi(2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil 255: 311-318. https://doi.org/10.1023/A:1026192607512
  19. Lee, N.Y., J.W. Koo, N.J. Noh, J. Kim, Y. Son(2010) Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in acool-temperate forest, central Korea .J. Plant Res. 123: 485-495 https://doi.org/10.1007/s10265-010-0316-7
  20. Lee, J.Y., D.K. Kim, H.Y. Won, H.T. Mun(2013) Organic carbon distribution and budget in the Pinus densiflora forest at Mt. Worak National Park. Kor. J. of Env. Ecol. 27(5):. 561-570.(in Korean with English abstract) https://doi.org/10.13047/KJEE.2013.27.5.561
  21. Lee, S.K.(2011) Production and decomposition and organic carbon distribution in Pinus densiflora and Quercus mongolica and Robinia pseudoacacia Forest at Mt. Nam. M.S. Thesis, Kongju National University, pp. 22-26.
  22. Lousier, J.D. and D. Parkinson(1975) Litter decomposition in a cool temperate deciduous forest. Journal of Botany 54: 419-436.
  23. Mun, H.T. and J.H. Kim(1992) Litterfall, decomposition, and nutrients dynamics of litter in red pine (Pinus densiflora) and Chinese thuja (Thuja orientalis) stands in the limestone area. Korean J Ecology 15: 147-155.
  24. Mun, H.T., S.J. Kim, and C.H. Shin(2007) Litter production and nutrient contents of litterfall in oak and pine forests at Mt. Worak National Park. J Ecol Field Biol 30: 63-68.
  25. Mun, H.T(2004) Decay rate and nutrients dynamics during decomposition of Oak branches. J. of Ecol. Env. 27(2): 97-98.(in Korean with English abstract)
  26. Nakane, K., M. Yamamoto and H. Tsubota(1983) Estimation of root respiration rate in a mature forest ecosystem. Japanese J. Ecol. 33: 397-408.
  27. Namgung, J.(2010) Carbon budget and nutrient cycling in the Quercus variabilis forest at Mt. Worak National Park. Ph.D. Thesis, Kongju National University, pp. 152-156.
  28. Namgung, J., H.J. Choi, A.R. Han and H.T. Mun(2008) Organic carbon distribution and budget in the Quercus variabilis forest in the Youngha valley of Worak National Park. Kor. J. Env. Ecol. 26(3): 170-176.(in Korean with English abstract)
  29. Noh, N.J.(2011) Carbon and Nitrogen Dynamics in Natural Pinus densiflora Forest with Different Stand Densities. Ph.D. Thesis, Korea University, pp. 22-23.
  30. Park K.S.(1999) Aboveground and soil carbon storages in Quercus mongolica and Quercus variabilis natural forest ecosystems in Chungju. Kor. For. Soc. 88(1): 93-100.(in Korean with English abstract)
  31. Park, G.S. and J.G. Lim(2004) Annual carbon storage by fine root production in Quercus variabilis forests. Kor. J. Env. Eco. 17(4) : 360-365.(in Korean with English abstract)
  32. Pyo, J.H., S.U. Kim and H.T. Mun(2003) A study on the carbon budget in Pinus koreansis plantation. Kor. J. Ecol. 26(3): 129-134.(in Korean with English abstract) https://doi.org/10.5141/JEFB.2003.26.3.129
  33. Rodin, L.E. and N.I. Bazilevich(1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, London, England, 288pp.
  34. Ruess, R.W., K. Van Cleve, J. Yarie and L.A. Viereck(1996) Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Car J For Res 26: 1326-1336.
  35. Satoo, T. and H.A.I. Madgwick(1982) Forest Biomass. Martinus Nijhoff. Dr. W. Junk Publishers, 152pp.
  36. Schmitt, M.D.C. and D.F. Grigal(1981) Generalized biomass estimation equations for Betula papyrifera Marsh. Can J For Res11(4): 837-840.
  37. Sharma, E. and R.S. Ambasht(1987) Litterfall, decomposition and nutrient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. Ecology 75: 997-1010. https://doi.org/10.2307/2260309
  38. Son, Y.M., K.H. Lee, L.H. Kim, J.K. Pyo, I.H. Park, Y.H. Son, Y.J. Lee, C.S. Kim(2011) Development of carbon emission factors and biomass allometric equations by major species in Korea. Kor. For. Soc. 2011(2011): 1088-1090(in Korean)
  39. Son, Y.H., M.J. Lee, D.Y. Kim, H.O. Jin, I.H. Park(2005) Effects of the changes in local environments on the nutrient cycling of the natore Oak stands in Korea. Korea Science and Engineering Foundation. Rep. Korea. 28pp.
  40. Song, C.Y. and S.U. Lee(1996) Biomass and Net Primary Productivity in Natural Forests of Quercus mongolica and Quercus variabilis. J. Kor. For. Soc. 85(3): 443-452.
  41. Tritton, L.M. and J.W. Hornbeck(1982) Biomass equations for major tree species of the Northeast. United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, General Technical Report, NE-69, 46pp.
  42. Waring, R.H. and W.H. Schlesinger(1985) Forest Ecosystems; Concept and Management. Academic Press, New York, 340pp.
  43. Winjum, J.K., R.K. Dixon and P.E. Schroeder(1992) Estimating the global potential of forest and agroforest management practices to sequester carbon. Water, Air and Soil Pollut 64: 213-227. https://doi.org/10.1007/BF00477103
  44. Won, H.Y, C.H. Shin, H.T. Mun(2014) Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica forest at Mt. Worak National Park. J. of Wetl. Res. 16(3): 315-325.(in Korean with English abstract) https://doi.org/10.17663/JWR.2014.16.3.315