DOI QR코드

DOI QR Code

Improvement of Minority Carrier Life Time in N-type Monocrystalline Si by the Czochralski Method

  • Received : 2016.01.20
  • Accepted : 2016.04.02
  • Published : 2016.07.20

Abstract

The installation amount of solar power plants increases every year. Multi-crystalline Si solar cells comprise a large share of the market of solar power plants. Multi-crystalline and single-crystalline Si solar cells are competing against one another in the market. Many single-crystalline companies are trying to develop and produce n-type solar cells with higher cell efficiency than that of p-type. In n-type wafers with high cell efficiency, wafer quality has become increasingly important. In order to make ingots with higher MCLT, the effects of both poly types related to metal impurities and pull speeds related to vacancy concentration on minority carrier life time were studied. In the final part of ingots, poly types related to the metal impurities are a dominant factor on MCLT. In the initial part of ingots, pull speeds related to vacancy concentration are a dominant factor on MCLT.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. M. Hosenuzzaman, N. A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. B. M. A. Malek, and A. Nahar, Renew. Sust. Energ. Rev. 41, 284 (2015). https://doi.org/10.1016/j.rser.2014.08.046
  2. K. Y. Kim, H. K. Moon, N. E. Lee, B. H. Hong, and S. H. Oh, Electron. Mater. Lett. 11, 93 (2015). https://doi.org/10.1007/s13391-014-4080-z
  3. A. K. Pandey, V. V. Tyagi, A. Jeyraj, L. Selvaraj, N. A. Rahim, and S. K. Tyagi, Renew. Sust. Energ. Rev. 53, 859 (2016). https://doi.org/10.1016/j.rser.2015.09.043
  4. S. D. Stranks, P. K. Nayak, W. Zhang, T. Stergiopoulos, and H. J. Snaith, Angew. Minirev. 54, 3240 (2015).
  5. H. Wagner, J. Hofstetter, B. Mitchell, P. P. Altermatt, and T. Buonassisi, Energ. Proced. 77, 225 (2015). https://doi.org/10.1016/j.egypro.2015.07.031
  6. Y. K. Park, J. G. Lu, J. H. Park, and G. Rozgonyi, Electron. Mater. Lett. 11, 658 (2015). https://doi.org/10.1007/s13391-015-5173-z
  7. J. Haunschild, I. E. Reis, J. Geilker, and S. Rein, Phys. Status. Solidi-R. 5, 199 (2011). https://doi.org/10.1002/pssr.201105183
  8. J. Kim, S. Y. Yoon, and K. Choi, Curr. Appl. Phys. 13, 2103 (2013). https://doi.org/10.1016/j.cap.2013.09.013
  9. K. H. Kim, B. C. Sim, I. S. Choi, and H. W. Lee, J. Cryst. Growth 299, 206 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.267
  10. A. Black, J. Medina, A. Pineiro, and E. Dieguez, J. Cryst. Growth 353, 12 (2012). https://doi.org/10.1016/j.jcrysgro.2012.04.033
  11. V. V. Voronkov, J Cryst. Growth 59, 625 (1982). https://doi.org/10.1016/0022-0248(82)90386-4

Cited by

  1. Bulk defect formation under light soaking in seed-end n-type Czochralski silicon wafers – Effect on silicon heterojunction solar cells vol.166, pp.None, 2017, https://doi.org/10.1016/j.solmat.2017.03.019
  2. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production vol.14, pp.4, 2016, https://doi.org/10.1007/s13391-018-0040-3
  3. 쵸크랄스키법 실리콘 성장로에서 핫존 온도분포 경향에 대한 히터와 석영도가니의 상대적 위치의 영향 vol.28, pp.5, 2016, https://doi.org/10.6111/jkcgct.2018.28.5.179
  4. Relationship of Free Surface Area with Oxygen Concentration in Silicon Ingot Grown by Czochralski Method for High Efficiency Solar Cells vol.77, pp.11, 2020, https://doi.org/10.3938/jkps.77.940