DOI QR코드

DOI QR Code

Future Changes in Summer Precipitation in Regional Climate Simulations over the Korean Peninsula Forced by Multi-RCP Scenarios of HadGEM2-AO

  • Cha, Dong-Hyun (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Dong-Kyou (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jin, Chun-Sil (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Gayoung (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Choi, Yonghan (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Suh, Myoung-Seok (Department of Atmospheric Science, Kongju National University) ;
  • Ahn, Joong-Bae (Department of Atmospheric Sciences, Pusan National University) ;
  • Hong, Song-You (Korea Institute of Atmospheric Prediction Systems) ;
  • Min, Seung-Ki (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Park, Seong-Chan (Korea Meteorological Administration) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Science)
  • Received : 2015.10.31
  • Accepted : 2016.04.01
  • Published : 2016.05.31

Abstract

In this study, the regional climate of the Korean Peninsula (KP) was dynamically downscaled using a high-resolution regional climate model (RCM) forced by multi- representative concentration pathways (RCP) scenarios of HadGEM2-AO, and changes in summer precipitation were investigated. Through the evaluation of the present climate, the RCM reasonably reproduced long-term climatology of summer precipitation over the KP, and captured the sub-seasonal evolution of Changma rain-band. In future projections, all RCP experiments using different RCP radiative forcings (i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 runs) simulated an increased summer precipitation over the KP. However, there were some differences in changing rates of summer precipitation among the RCP experiments. Future increases in summer precipitation were affected by future changes in moisture convergence and surface evaporation. Changing ranges in moisture convergences among RCP experiments were significantly larger than those in surface evaporation. This indicates that the uncertainty of changes in summer precipitation is related to the projection of the monsoon circulation, which determines the moisture convergence field through horizontal advection. Changes in the sub-seasonal evolution of Changma rain-band were inconsistent among RCP experiments. However, all experiments showed that Changma rain-band was enhanced during late June to early July, but it was weakened after mid-July due to the expansion of the western North Pacific subtropical high. These results indicate that precipitation intensity related to Changma rain-band will be increased, but its duration will be reduced in the future.

Keywords

Acknowledgement

Supported by : Korea Meteorological Administration

References

  1. Ahn, Y. I., and D. K. Lee, 2002: Impact of bogus tropical cyclones on summertime circulation in regional climate simulation. J. Geophys. Res-Atmos., 107, ACL 8-1-ACL 8-16.
  2. Baek, H. J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603-618. https://doi.org/10.1007/s13143-013-0053-7
  3. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123-3149. https://doi.org/10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2
  4. Bosilovich, M. G., and W. Y. Sun, 1999: Numerical simulation of the 1993 midwestern flood: Land-atmosphere interactions. J. Climate, 12, 1490-1505. https://doi.org/10.1175/1520-0442(1999)012<1490:NSOTMF>2.0.CO;2
  5. Briegleb, B. P., 1992: Delta-eddington approximation for solar-radiation in the NCAR community climate model. J. Geophys. Res., 97, 7603-7612. https://doi.org/10.1029/92JD00291
  6. Cha, D. H., and D. K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res-Atmos., 114, D14108, doi:10.1029/2008jd011176.
  7. Cha, D. H., C. S. Jin, and D. K. Lee, 2011a: Impact of local sea surface temperature anomaly over the western North Pacific on extreme East Asian summer monsoon. Clim. Dynam., 37, 1691-1705. https://doi.org/10.1007/s00382-010-0983-z
  8. Cha, D. H., C. S. Jin, and D. K. Lee, and Y. H. Kuo, 2011b: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res-Atmos., 116, D10103, doi:10.1029/2010jd015069.
  9. Conway, T. J., P. P. Tans, L. S. Waterman, and K. W. Thoning, 1994: Evidence for Interannual Variability of the Carbon-Cycle from the National-Oceanic-and-Atmospheric-Administration Climate-Monitoringand-Diagnostics-Laboratory Global-Air-Sampling-Network. J. Geophys. Res-Atmos., 99, 22831-22855. https://doi.org/10.1029/94JD01951
  10. Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan, 1998: Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. Trends: a compendium of data on global change, 351-364.
  11. Fu, C. B., S. Y. Wang, Z. Xiong, W. J. Gutowski, D. K. Lee, J. L. McGregor, Y. Sato, H. Kato, J. W. Kim, and M. S. Suh, 2005: Regional climate model intercomparison project for Asia. Bull. American Meteorol. Soc., 86, 257-266. https://doi.org/10.1175/BAMS-86-2-257
  12. Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res-Atmos., 104, 6335-6352. https://doi.org/10.1029/98JD02072
  13. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifthgeneration Penn State/NCAR mesoscale model (MM5). NCAR/TN- 398+STR, NCAR Technical Note, 122 pp.
  14. Hong, J. Y., and J. B. Ahn, 2015: Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations. J. Climate, 28, 3557-3578. https://doi.org/10.1175/JCLI-D-14-00504.1
  15. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  16. Hong, S. Y., and J. W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818-831. https://doi.org/10.1016/j.atmosres.2009.03.015
  17. Hong, S. Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104. https://doi.org/10.1007/s13143-014-0029-2
  18. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Applied Meteorology, 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  19. Kang, H. S., D. H. Cha, and D. K. Lee, 2005: Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. J. Geophys. Res-Atmos., 110, D10105, doi:10.1029/2004jd005266.
  20. Keeling, C. D., and T. P. Whorf, 2005: Atmospheric CO2 records from sites in the SIO air sampling network. Trends: a compendium of data on global change, 16-26.
  21. Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84, 581-611. https://doi.org/10.2151/jmsj.84.581
  22. Lee, D. K., D. H. Cha, and H. S. Kang, 2004: Regional climate simulation of the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735-1753. https://doi.org/10.2151/jmsj.82.1735
  23. Lee, D. K., D. H. Cha, C. S. Jin, and S. J. Choi, 2013: A regional climate change simulation over East Asia. Asia-Pac. J. Atmos. Sci., 49, 655-664. https://doi.org/10.1007/s13143-013-0058-2
  24. Lee, J. W., and S. Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol., 117, 667-677. https://doi.org/10.1007/s00704-013-1034-6
  25. Meinshausen, M., S. J. Smith, K. Calvin, J. S. Daniel, M. Kainuma, J. Lamarque, K. Matsumoto, S. Montzka, S. Raper, and K. Riahi, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213-241. https://doi.org/10.1007/s10584-011-0156-z
  26. Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. Van Vuuren, T. R. Carter, S. Emori, M. Kainuma, and T. Kram, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756. https://doi.org/10.1038/nature08823
  27. Niu, X., S. Wang, J. Tang, D. K. Lee, X. Gao, J. Wu, S. Hong, W. J. Gutowski, and J. McGregor, 2015: Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J. Geophys. Res-Atmos., 120, 9965-9980.
  28. Reisner, J., R. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Roy. Meteor. Soc., 124, 1071-1108. https://doi.org/10.1002/qj.49712454804
  29. Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, and D. Behringer, 2010: The NCEP climate forecast system reanalysis. Bull. American Meteorol. Soc., 91, 1015-1057. https://doi.org/10.1175/2010BAMS3001.1
  30. Stocker, T. F., and Coauthors, Eds., 2014: Climate change 2013: The physical science basis. Cambridge University Press, 1535 pp.
  31. Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of New Ensemble Methods Based on the Performance Skills of Regional Climate Models over South Korea. J. Climate, 25, 7067-7082. https://doi.org/10.1175/JCLI-D-11-00457.1
  32. von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673. https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2
  33. Wang, Y. Q., L. R. Leung, J. L. McGregor, D. K. Lee, W. C. Wang, Y. H. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82, 1599-1628. https://doi.org/10.2151/jmsj.82.1599
  34. Xu, W. X., 2013: Precipitation and Convective Characteristics of Summer Deep Convection over East Asia Observed by TRMM. Mon. Wea. Rev., 141, 1577-1592. https://doi.org/10.1175/MWR-D-12-00177.1
  35. Xue, Y. K., Z. Janjic, J. Dudhia, R. Vasic, and F. De Sales, 2014: A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res., 147, 68-85.
  36. Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. American Meteorol. Soc., 93, 1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1
  37. Yhang, Y. B., and S. Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963-979. https://doi.org/10.1175/2007JCLI1694.1
  38. Zhong, Z., 2006: A possible cause of a regional climate model's failure in simulating the east Asian summer monsoon. Geophys. Res. lett., 33, L24707, doi:10.1029/2006GL027654.

Cited by

  1. Change in Extreme Precipitation over North Korea Using Multiple Climate Change Scenarios vol.11, pp.2, 2016, https://doi.org/10.3390/w11020270
  2. Future projections and uncertainty assessment of precipitation extremes in the Korean peninsula from the CMIP5 ensemble vol.21, pp.2, 2016, https://doi.org/10.1002/asl.954
  3. GIS Based Assessment and Design for Areas Vulnerable to Soil Disasters: Case Study of Namhyeun-dong, South Korea vol.12, pp.6, 2016, https://doi.org/10.3390/su12062516
  4. Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models vol.40, pp.4, 2016, https://doi.org/10.1002/joc.6331
  5. Multiscale Variability of Meiyu and Its Prediction: A New Review vol.125, pp.7, 2020, https://doi.org/10.1029/2019jd031496
  6. Projection of future precipitation change over South Korea by regional climate models and bias correction methods vol.141, pp.3, 2016, https://doi.org/10.1007/s00704-020-03282-5
  7. Regional climate modeling for Asia vol.7, pp.None, 2016, https://doi.org/10.1186/s40562-020-00162-8
  8. A Dipole Mode of Spring Precipitation between Southern China and Southeast Asia Associated with the Eastern and Central Pacific Types of ENSO vol.33, pp.23, 2020, https://doi.org/10.1175/jcli-d-19-0625.1
  9. Future Projections and Uncertainty Assessment of Precipitation Extremes in the Korean Peninsula from the CMIP6 Ensemble with a Statistical Framework vol.12, pp.1, 2016, https://doi.org/10.3390/atmos12010097
  10. Application of Bias- and Variance-Corrected SST on Wintertime Precipitation Simulation of Regional Climate Model over East Asian Region vol.57, pp.3, 2016, https://doi.org/10.1007/s13143-020-00189-z
  11. Diverse Synoptic Weather Patterns of Warm-Season Heavy Rainfall Events in South Korea vol.149, pp.11, 2016, https://doi.org/10.1175/mwr-d-20-0388.1
  12. Diverse Synoptic Weather Patterns of Warm-Season Heavy Rainfall Events in South Korea vol.149, pp.11, 2016, https://doi.org/10.1175/mwr-d-20-0388.1
  13. What determines future changes in photovoltaic potential over East Asia? vol.185, pp.None, 2016, https://doi.org/10.1016/j.renene.2021.12.029