DOI QR코드

DOI QR Code

Effect of Infographic Instruction to Promote Elementary Students' Use of Scientific Model

초등학생들의 과학적 모델 사용 활성화를 위한 인포그래픽 수업의 효과

  • Received : 2016.03.04
  • Accepted : 2016.04.08
  • Published : 2016.04.30

Abstract

The purpose of this study was to analyze the effect of infographic instruction to promote the use of the scientific model in the 'lens' unit of elementary science textbooks. The participants were $6^{th}$ grade students(n=53) of G elementary school in G city, Gyeongsangnam-do. For this study, the lesson plan of the 'lens' unit consisted of three steps as investigation of students' prior concept about the lens, scientific model construction activity, and infographic construction activity. We then analyzed the results of this study from three perspectives: the scientific concept, scientific model, and infographic. Before the lesson, students focused on the external shape and material of the lens in prior concept of it. However, after the scientific model construction activity and infographic construction activity, students' scientific concept about the lens improved in the categories of features of lens, features of glasses, light path, and applications of the lens. In terms of the scientific model, use of type and frequency of scientific model increased more in the infographic construction activity than the scientific construction model activity. Also, in terms of infographic, the two infographic types as function based infographic and connection based infographic used more than non-infographic in the infographic construction activity. Also, the frequency of Gestal theory's visual perception increased more in the infographic construction activity than the scientific model construction activity.

본 연구의 목적은 초등학교 6학년 1학기 3단원 렌즈의 이용단원에서 인포그래픽 수업을 이용하여 학생들이 과학적 모델 사용이 활성화 되는지 알아보는 것이다. 연구 대상은 경상남도 G시의 G초등학교 6학년 53명을 대상으로 실시하였다. 이 연구를 위해, 수업 계획은 학생들의 렌즈에 대한 선개념 조사, 과학적 모델 구성 활동, 인포그래픽 구성 활동으로 3단계로 구성하였다. 그리고 과학적 개념, 과학적 모델, 인포그래픽 3개의 관점으로 연구 결과를 분석하였다. 수업이 이루어지기 전, 학생들은 렌즈에 관해 렌즈의 외형적 형태와 구성물질에 주로 선개념을 가지고 있었다. 그러나 과학적 모델 구성 활동과 인포그래픽 구성 활동을 한 후에는 렌즈의 특징, 안경의 특징, 빛의 나아감, 렌즈의 이용 범주에서 개념적으로 향상된 것을 확인하였다. 과학적 모델 분석 관점에서는 과학적 모델 구성 활동보다 인포그래픽 구성 활동에서 다양한 종류의 과학적 모델이 사용되고 사용 빈도도 높게 나타났다. 또한 인포그래픽 분석 관점에서는 인포그래픽 구성 활동에서 인포그래픽이 아닌 그림보다 기능기반 인포그래픽과 관계기반 인포그래픽이 증가하였다. 그리고 게슈탈트의 시지각 특성의 빈도가 과학적 모델 구성 활동보다 인포그래픽 구성 활동에서 더 높게 나타났다.

Keywords

References

  1. Abell, S. K., & Roth, M. (1995). Reflections on a fifth-grade life science lesson: Making sense of children's understanding of scientific models. International Journal of Science Education, 17(1), 59-74. https://doi.org/10.1080/0950069950170105
  2. Baker, V. R. (1999). Geosemiosis. Geological Society of America Bulletin, 111(5), 633-645. https://doi.org/10.1130/0016-7606(1999)111<0633:G>2.3.CO;2
  3. Black, M. (1962). Models and metaphors. Ithaca, NY: Cornell University Press.
  4. Boulter, C. J. (2000). Language, models and modeling in the primary science classroom. In J. K. Gilbert&C. J. Boulter (Eds.), Developing models in science education(pp. 289-305). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  5. Boulter, C. J., & Buckley, B. C. (2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 41-57). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  6. Bruner, J. (1966). Towards a theory of instruction. Cambridge: Harvard University Press.
  7. Cheng, M. F., & Brown, D. E. (2015). The role of scientific modeling criteria in advancing students' explanatory ideas of magnetism. Journal of Research in Science Teaching, 52(8), 1053-1081. https://doi.org/10.1002/tea.21234
  8. Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109-138. https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7
  9. Cho, H., Nam, J., & Lee, D. (2014). The development of argument-based modeling strategy using scientific writing. Journal of the Korean Association for Research in Science Education, 34(5), 479-490. https://doi.org/10.14697/jkase.2014.34.5.0479
  10. Clement, J. J. (2008). Creative model construction in scientists and students: The role of analogy, imagery, and mental simulation. Dordrecht, The Netherlands: Springer.
  11. Coll, R. K., & Lajium, D. (2011). Modeling and the future of science learning. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling (pp. 3-21). Dordrecht, The Netherlands: Springer.
  12. Dodick, J., & Orion, N. (2003). Geology as an historical science: Its perception within science and the education system. Science & Education, 12(2), 197-211. https://doi.org/10.1023/A:1023096001250
  13. Forbes, C., Zangori, L., & Schwarz, C. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students' model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921. https://doi.org/10.1002/tea.21226
  14. Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
  15. Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dordrecht, The Netherlands: Kluwer Academic.
  16. Gilbert, J. K., & Boulter, C. J. (1997). Learning science through models and modeling. In B. Fraser & K. Tobin (Eds.), The international handbook of science education(pp. 53-66). Dordrecht: Kluwer.
  17. Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, 33(9), 1-26.
  18. Harlow, D. B., Bianchini, J. A., Swanson, L. H., & Dwyer, H. A. (2013). Potential teachers' appropriate and inappropriate application of pedagogical resources in a model‐based physics course: A "knowledge in pieces" perspective on teacher learning. Journal of Research in Science Teaching, 50(9), 1098-1126. https://doi.org/10.1002/tea.21108
  19. Harrison, A. G., & Treagust, D. F. (2000a). A typology of school science models. International Journal of Science Education, 22, 1011-1026. https://doi.org/10.1080/095006900416884
  20. Harrison, A. G., & Treagust, D. F. (2000b). Learning about atoms, molecules, and chemical bonds: A case study of multiple model use in grade 11 chemistry. Science Education, 84, 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  21. Jeon, S., Jung, J., & Park, J. (2014). An analysis of science magazine in the view of infographic. Journal of the Korean Association for Research in Science Education, 34(6), 601-611. https://doi.org/10.14697/jkase.2014.34.6.0601
  22. Khan, S. (2011). What's missing in model-based teaching. Journal of Science Teacher Education, 22(6), 535-560. https://doi.org/10.1007/s10972-011-9248-x
  23. Kim, M., & Kim, H. (2007). Analysis of high school students' conceptual change in model-based instruction for blood circulation. Journal of the Korean Association for Research in Science Education, 27(5), 379-393.
  24. Kim, H., & Shin, D. (2014). Representation method of info graphic imagetelling - Focusing on the Peirce's Semiotics. Semiotic Inquiry, 39, 403-438.
  25. Kim, J., Kim, W., & Kim, Y. (2009). Effects of science conceptual model completion activity and science conceptual model modifying activity on middle-school students' achievement in science conceptual learning. Journal of the Korean Association for Research in Science Education, 29(1), 1-9.
  26. Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679. https://doi.org/10.3102/00028312041003635
  27. Lehrer, R., & Schauble, L. (2010). What kind of explanation is a model? In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 9-22). New York, NY: Springer.
  28. Manz, E. (2012). Understanding the co-development of modeling practice and ecological knowledge. Science Education, 96(6), 1071-1105. https://doi.org/10.1002/sce.21030
  29. Mun, H., & Kang, D. (2015). Elementary school teachers' perception on infographics learning materials. Journal of Science education, 39(2), 151-164. https://doi.org/10.21796/jse.2015.39.2.151
  30. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  31. Nersessian, N. J. (2008). Mental modeling in conceptual change. In S. Vosniadou (Ed.) International handbook of research on conceptual change (pp. 391-416). London, UK: Routledge.
  32. Newsom, D., & Haynes, J. (2007). Public relations writing: Form & Style. Belmont, CA: Wadsworth/Cengage Learning.
  33. NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: Achieve, Inc.
  34. Noh, S. & Son, J. (2014). The effect of physics instruction using infographics based on visual thinking in high school. Journal of the Korean Association for Research in Science Education, 35(3), 477-485.
  35. Oh, P. (2007). Analysis of the manners of using scientific models in secondary earth science classrooms : With a focus on lessons in the domains of atmospheric and oceanic earth sciences. Journal of the Korean Association for Research in Science Education, 27(7), 645-662.
  36. Park, J., & Paik, S. (2004). The learning effect of teaching materials using computer animation of particulate model in elementary school science classes. Journal of Korean Elementary Science Education, 23(2), 116-122.
  37. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learner. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  38. Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313. https://doi.org/10.1002/tea.3660280404
  39. Smiciklas, M. (2012). The power of infographics: Using pictures to communicate and connect with your audiences. Indianapolis: Que Publishing.
  40. Vo, T., Forbes, C., Zangori, L., & Schwarz, C. (2015). Fostering third-grade students' use of scientific models with the water cycle: Elementary teachers' conceptions and practices. International Journal of Science Education, 37(15), 2411-2432. https://doi.org/10.1080/09500693.2015.1080880
  41. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  42. Yoon, H. (2011). Pre-service elementary teachers' inquiry on a model of magnetism and changes in their views of scientific models. The Korean Society of Elementary Science Education, 30(3), 353-366.

Cited by

  1. An Analysis of Infographics Used in Korean Optical Newspaper vol.22, pp.4, 2017, https://doi.org/10.14479/jkoos.2017.22.4.341
  2. 과학과 미디어 기반 학습 관련 문헌 연구 vol.37, pp.3, 2016, https://doi.org/10.14697/jkase.2017.37.3.417
  3. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.539
  4. 고등학교‘생명과학 I’교과서에서 단원별 시각화 자료 특징의 비교 분석 vol.45, pp.4, 2016, https://doi.org/10.15717/bioedu.2017.45.4.548
  5. 중학교 과학 교과서에서 과학 내용 영역에 따른 인포그래픽의 특징 분석 vol.41, pp.3, 2017, https://doi.org/10.21796/jse.2017.41.3.462
  6. 초등 과학 수업에서 학생주도 인포그래픽 구성 활동의 효과 vol.39, pp.5, 2016, https://doi.org/10.14697/jkase.2019.39.5.625
  7. 초등 과학수업에서 학생들이 구성한 비주얼 씽킹의 유형 및 수업 효과 vol.40, pp.1, 2016, https://doi.org/10.15267/keses.2021.40.1.100