DOI QR코드

DOI QR Code

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency

지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구

  • Kim, Pyoung-Hwa (School of Civil, Environmental and Architectural Engineering) ;
  • Kang, Sung-Yong (School of Civil, Environmental and Architectural Engineering) ;
  • Lee, Yun-Woo (School of Civil, Environmental and Architectural Engineering) ;
  • Kang, Young-jong (School of Civil, Environmental and Architectural Engineering)
  • 김평화 (고려대학교 건축사회환경공학과) ;
  • 강성용 (고려대학교 건축사회환경공학과) ;
  • 이윤우 (고려대학교 건축사회환경공학과) ;
  • 강영종 (고려대학교 건축사회환경공학과)
  • Received : 2016.02.17
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

최근 21세기에 접어들어 무분별한 발전의 결과로 석탄, 석유 등의 화석연료가 고갈되고 있으며, 지구 온난화가 진행중이다. 이미 유럽과 미국 등의 선진국에서는 신재생 에너지 분야에 관심을 갖고 있으며, 그 중에서도 풍력에너지가 많은 관심을 받고 있다. 풍력발전타워는 운용 중 주기적인 하중의 발생으로 만들어지는 주파수를 회피하여 설계를 해야 한다. 일반적으로 구조해석 과정 시 지반을 고정단 경계조건으로 해석한다. 하지만, 고정단 경계조건의 경우 지반 조건 상호작용을 고려하지 못하여 목표 진동수를 벗어나게 된다. 본 연구에서는 용량 별 지반경계 조건 및 기초의 근입깊이를 고려한 고유진동수 효과를 연구하였으며, 변수에 따른 차이를 확인하였다. 결과적으로 고정단 경계조건 모델은 지반조건과 근입깊이의 영향을 받지 않으며, Coupled Spring 경계조건 모델은 지반조건에는 영향을 받지만, 근입깊이에는 영향을 받지 않는다. Winkler Spring 경계조건의 경우에는 지반조건과 근입깊이에 모두 영향을 받는다. 하지만, 얕은 깊이의 지반에서는 지반조건의 영향을 받지 않으므로 Coupled Spring 경계조건 모델을 활용한 지반조건 별 해석을 수행하는 것이 효과적이다.

Keywords

References

  1. GL Guideline, "Guideline for the Certification of Wind Turbines", 2010.
  2. P. Brian, P. Marty, C. Benjamin, G. David, D. Dwight, S. Charles, G. Benjamin, "Evaluate the Effect of Turbine Period of Vibration Requirments on Structural Design Parameters: Technical Report of Findings", Applied Physical Sciences/M10PC00066-8, 2010.
  3. K. S. Lee, J. T. Lee, C. Y. Son, "A Study of Natural Frequency on Offshore Wind Turbine Structural Change", Proceeding of the Korean Society for Noise and Vibration Engineering Conference, pp. 1008-1016, 2007.
  4. C. Chantharasenawong, P. Jongpradist, S. Laoharatchapruek, "Preliminary design of 1.5-MW Modular Wind Turbine Tower", The 2nd TSME International Conference on Mechanical Engineering, 2011.
  5. H. S. Jang, H. S. Kim, Y. M. Kwak, J. H. Park, "Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil", Journal of Korean Society of Steel Construction, Vol.25, No.4, pp.421-430, 2013. DOI: http://dx.doi.org/10.7781/kjoss.2013.25.4.421
  6. M. Novak, "Dynamic Stiffness and Damping of Piles", Faculty of Engineering Science, University of Western Ontario, 1974.
  7. H. Matlock, "Correlation for Design of Laterally Loaded Piles in soft Clays", Proceeding of the 2nd Annual OTC Dallas, Texas, 1970. DOI: http://dx.doi.org/10.4043/1204-ms
  8. API, "Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design", Vol. 21 edition, API RP2A-WSD, American Petroleum Institute, WashingtonD.C., 2002.
  9. C. H. Choi, J. T. Han, S. D. Cho, Y. E. Jang, "The Effect of Flexibility for the Offshore Wind Turbine System", Journal of Korean Geo-Environmental Society, Vol. 14, No. 4, pp. 59-66, 2013.
  10. J. Jonkman, S. Butterfield, W. Musial, G. Scott, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development", Technical Report NREL/TP-500-38060, 2009.
  11. J. B. Won, N. E. Kim, H. J. Eum, B. S. Kim, "A Study on Vibration Characteristics of 1.5 MW Wind Turbine under Earthquake", Journal of Korea Wind Energy Association, 2008.
  12. S. M. Juing, S. R. Kim, J. H. Lee, C. H. Le, "Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head", Journal of Korean Geosynthetics Society, Vol. 13, No. 4, pp. 21-3, 2014. DOI: http://dx.doi.org/10.12814/jkgss.2014.13.4.021
  13. N. Stromblad, "Modeling of Soil and Structure Interaction Subsea", Chalmers University of Computational Mechanics, Master's thesis in Applied Mechanics, 2014.
  14. R. Rubak, J. T. Petersen, "Monopile as Part of Aeroelastic Wind Turbine Simulation Code", Copenhagem Offshore Wind 2005 Conference and Expedition Proceedings, 2005.
  15. DNV, "Wellhead Fatigue Analysis Method", Report no/DNV Reg No.: 2011-0063/ 12Q5071-26, 2011.