DOI QR코드

DOI QR Code

Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue

  • Kim, Baek-Hwan (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Ji-Hong (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Jong-Gu (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Bae, Min-Jeong (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Seok (Department of Chemical and Biomolecular Engineering, Pusan National University)
  • Received : 2016.05.23
  • Accepted : 2016.07.02
  • Published : 2016.09.25

Abstract

The petroleum pitch derived from pyrolyzed fuel oil (PFO) was prepared and modified using the solvent extraction method to study the effect of the pitch fraction on electrochemical and structural behaviors. The modified pitches were Hexane-insoluble, Toluene-insoluble and NMP-insoluble pitches. To confirm the structural characteristic parameters such as ($L_a$, $d_{002}$, $I_G/I_D$ and true density), X-ray diffraction, Raman spectroscopy and true density measurements were conducted. Electrochemical properties were measured using the coin cell test. Based on the electrochemical properties and structural analyses, the schematic design of the micro-carbon domain was proposed, and the role of each fraction (hexane-soluble, hexane-soluble and toluene-insoluble, Toluene-insoluble and NMPI-insoluble and NMPI fractions) was studied. Each fraction affected the coke during carbonization, and the hexane-soluble fraction and hexane-soluble and toluene-insoluble fraction affected the initial efficiency and $Li^+$ ion diffusion resistance.

Keywords

Acknowledgement

Supported by : Ministry of Science, ICT and Future Planning of Korea

References

  1. M. Fang, T. Ho, J. Yen, Y. Lin, J. Hong, S. Wu, J. Jow, Materials 8 (2015) 3350.
  2. M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. Int. Ed. 42 (2003) 4203. https://doi.org/10.1002/anie.200351203
  3. A. Caballero, L. Hernan, J. Morales, M. Olivares-Marin, V. Gomez-Serrano, Electrochem. Solid State Lett. 12 (2009) A167. https://doi.org/10.1149/1.3143922
  4. Y. Han, J. Kim, J. Yeo, J. An, I. Hong, K. Nakabayashi, J. Miyawaki, J. Jung, S. Yoon, Carbon 94 (2015) 432. https://doi.org/10.1016/j.carbon.2015.07.030
  5. W. Zhang, J. Andersson, H. Rader, K. Mullen, Carbon 95 (2015) 672. https://doi.org/10.1016/j.carbon.2015.08.057
  6. J. Kim, J. Kim, B. Song, Y. Jeon, C. Lee, Y. Lee, J. Im, Fuel 167 (2016) 25. https://doi.org/10.1016/j.fuel.2015.11.050
  7. E. Cho, B. Bai, J. Im, C. Lee, S. Kim, J. Ind. Eng. Chem. 35 (2016) 341. https://doi.org/10.1016/j.jiec.2016.01.012
  8. H. Marsh, C. Latham, E. Gray, Carbon 23 (1985) 555. https://doi.org/10.1016/0008-6223(85)90092-2
  9. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, R. Menendez, Carbon 33 (1995) 295. https://doi.org/10.1016/0008-6223(94)00130-R
  10. C. Blanco, R. Santamaria, J. Bermejo, R. Menendez, Carbon 38 (2000) 1169. https://doi.org/10.1016/S0008-6223(99)00243-2
  11. B. Manoj, A. Kunjomana, Int. J. Electrochem. Sci. 7 (2012) 3127.
  12. N. Saenko, Phys. Procedia 23 (2012) 102. https://doi.org/10.1016/j.phpro.2012.01.026
  13. C. Song, S. Park, S. Kim, J. Electrochem. Soc. 163 (2016) F668. https://doi.org/10.1149/2.0901607jes
  14. C. Song, S. Kim, J. Electrochem. Soc. 162 (2015) F1181. https://doi.org/10.1149/2.0341510jes
  15. K. Naoi, N. Ogihara, Y. Igarashi, A. Kamakura, Y. Kusachi, K. Utsugi, J. Electrochem. Soc. 152 (2005) A1047. https://doi.org/10.1149/1.1896531
  16. M. Perez, M. Granda, R. Garcia, R. Santamaria, E. Romero, R. Menendez, J. Anal. Appl. Pyrolysis 63 (2002) 223. https://doi.org/10.1016/S0165-2370(01)00156-5
  17. J. Park, S. Kim, J. Electrochem. Soc. 161 (2014) F518. https://doi.org/10.1149/2.076404jes
  18. S. Wang, Y. Tang, H. Schobert, Y. Guo, Y. Su, Energy Fuels 25 (2011) 5672. https://doi.org/10.1021/ef201196v
  19. J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, Fuel 80 (2001) 41. https://doi.org/10.1016/S0016-2361(00)00057-0
  20. A. Mabuchi, Tanso 165 (1994) 298.
  21. J. Gnanaraj, M. Levi, E. Levi, G. Salitra, D. Aurbach, J. Fischer, A. Claye, J. Electrochem. Soc. 148 (2001) A525. https://doi.org/10.1149/1.1368096
  22. S. Zhang, K. Xu, T. Jow, Electrochim. Acta 51 (2006) 1636. https://doi.org/10.1016/j.electacta.2005.02.137
  23. T. Morita, N. Nakami, Electrochim. Acta 49 (2004) 2591. https://doi.org/10.1016/j.electacta.2004.02.010
  24. S. Huang, H. Guo, X. Li, Z. Wang, L. Gan, J. Wang, W. Xiao, J. Solid State Electrochem. 17 (2013) 1401. https://doi.org/10.1007/s10008-013-2003-9

Cited by

  1. Coalescence of mesophase spheres and microstructure of graphitic carbon revealed by scanning electron microscopy vol.52, pp.21, 2016, https://doi.org/10.1007/s10853-017-1364-3
  2. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors vol.5, pp.30, 2016, https://doi.org/10.1039/c7ta02966g
  3. The effect of carbon black on reforming of pyrolysis fuel oil for a binder pitch vol.206, pp.None, 2016, https://doi.org/10.1016/j.fuel.2017.05.056
  4. 석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.561
  5. Chemical Modification of Asphaltene with SEBS as Precursor for Isotropic Pitch‐Based Carbon Fiber vol.4, pp.13, 2016, https://doi.org/10.1002/slct.201803764
  6. Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis vol.29, pp.3, 2016, https://doi.org/10.1007/s42823-019-00027-x
  7. 피치계 소프트 카본 음극재 제조 시 피치의 연화점이 음극재 초기 효율 및 율속 특성에 미치는 영향 vol.30, pp.3, 2016, https://doi.org/10.14478/ace.2019.1015
  8. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3
  9. 침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성 vol.31, pp.5, 2020, https://doi.org/10.14478/ace.2020.1061
  10. The effect of mild activation on the electrochemical performance of pitch-coated graphite for the lithium-ion battery anode material vol.278, pp.None, 2020, https://doi.org/10.1016/j.matlet.2020.128421
  11. Pitch‐Based Laminated Carbon Formed by Pressure Driving at Low Temperature as High‐Capacity Anodes for Lithium Energy Storage Systems vol.26, pp.69, 2016, https://doi.org/10.1002/chem.202003493
  12. Production of Carbon Binders from Petroleum and Coal Derivatives vol.64, pp.4, 2016, https://doi.org/10.3103/s1068364x21040074