DOI QR코드

DOI QR Code

Biogeochemical Activity of Indigenous Bacteria in KURT Deep-Fracture and Subsequent Change of Adsorption Behavior Characteristics of Radioactive Uranium

KURT 암반단열 내 미생물의 생지화학적 활동과 방사성 우라늄의 수착거동 특성 변화

  • 이승엽 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 백민훈 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 차완식 (한국원자력연구원 화학연구부) ;
  • 류지훈 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2016.10.04
  • Accepted : 2016.10.24
  • Published : 2016.10.31

Abstract

The radioactive wastes that would be disposed in a deep underground environment could interact with groundwater, and subsequently some radionuclides would be released and finally reach to the surface ecosystem through rock fractures. We conducted an experiment to make radioactive uranium interacted with KURT fracture-filling materials under a laboratory disposal condition. First, we identified indigenous bacteria that were alive in some fracture-filling materials. They have made the fracture-filling materials altered, and affected the adsorption behaviors of uranium for a long-term experimental period. There occurred a characteristic dissolution of some iron-bearing minerals and a subsequent new formation of sulfides, including a relative increase of uranium adsorption onto the fracture-filling materials by the indigenous bacteria. These results show that some radionuclides such as uranium that could move through the rock fractures are expected to be largely affected by the biogeochemical activity of the fracture-living bacteria on their adsorption and mobility.

지하심부 환경에 처분된 방사성폐기물은 오랜 기간 지하수와 반응하면서 일부 핵종들은 용출되고 암반 단열을 통해 지표 생태계에 최종 도달하게 될 것이다. 이를 가정하여 실내 처분환경조건 하에서 방사성 우라늄과 KURT 단열충전물과의 상호반응 실험을 수행하였다. 실험에 앞서 단열충전물 내에 토착미생물이 생존하고 있음을 확인하였고, 이들 미생물에 의해 장기적으로 단열충전물이 변질되고 방사성 우라늄의 수착 거동이 달라짐을 확인하였다. 관찰된 현상으로는 토착미생물에 의해 철함유 광물들이 용해되거나 새로운 황화물이 생성되었고, 단열충전물에 대한 우라늄의 수착량도 상대적으로 증가하였다. 이와 같은 결과를 통해, 단열을 따라 이동하게 될 우라늄과 같은 핵종들은 단열충전물 내 토착미생물들의 생지화학적 활동으로 장기적으로 핵종들의 수착 및 이동성이 크게 영향받을 것으로 예상된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. and Lovley, D.R., 2003, "Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uraniumcontaminated aquifer," Appl. Environ. Microbiol., Vol. 69, No. 10, pp. 5884-5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  2. Bargar, J.R., Williams, K.H., Campbell, K.M., Long, P.E., Stubbs, J.E., Suvorova, E.I., Lezama-Pacheco, J.S., Alessi, D.S., Stylo, M., Webb, S.M., Davis, J.A., Giammar, D.E., Blue, L.Y. and Bernier-Latmani, R., 2013, "Uranium redox transition pathways in acetate-amended sediments," Proc. Natl. Acad. Sci., Vol. 110, No. 12, pp. 4506-4511. https://doi.org/10.1073/pnas.1219198110
  3. Choi, H.J., Lee, J.Y. and Choi, J.W., 2013, "Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea," Nucl. Eng. Technol., Vol. 45, No. 1, pp. 29-40. https://doi.org/10.5516/NET.06.2012.006
  4. Ehrlich, H.L., 1990, Geomicrobiology, 2nd(ed.), Marcel Dekker, New York, p. 646
  5. Hua, B., Xu, H., Terry, J. and Deng, B., 2006, "Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems," Environ. Sci. Technol., Vol. 40, No. 15, pp. 4666-4671. https://doi.org/10.1021/es051804n
  6. Hyun, S.P., Davis, J.A., Sun, K. and Hayes, K.F., 2012, "Uranium(VI) reduction by iron(II) monosulfide mackinawite," Environ. Sci. Technol., Vol. 46, No. 3, pp. 3369-3376. https://doi.org/10.1021/es203786p
  7. Kim, Y., Oh, J.M., Jung, H.Y., Lee, S.Y. and Roh, Y., 2014, "Characterization of microbial diversity of metal-reducing bacteria enriched from groundwater and reduction/biomineralization of iron and manganese," Econ. Environ. Geol., Vol. 47, No. 4, pp. 431-439. https://doi.org/10.9719/EEG.2014.47.4.431
  8. Lee, J.Y., Lee, S.Y., Baik, M.H. and Jeong, J.T., 2013a, "Existence and characteristics of microbial cells in the bentonite to be used for a buffer material of high-level wastes," J. Nucl. Fuel Cycle Waste Technol., Vol. 11, No. 2, pp. 95-102. https://doi.org/10.7733/jkrws.2013.11.2.95
  9. Lee, S.Y., Baik, M.H. and Cho, W.J., 2006, "Mineralogical characteristics of calcite observed in the KAERI underground research tunnel," J. Miner. Soc. Korea, Vol. 19, No. 4, pp. 239-246.
  10. Lee, S.Y., Baik, M.H., Cho, H.R., Jung, E.C., Jeong, J.T., Choi, J.W., Lee, Y.B. and Lee, Y.J., 2013b, "Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing conditon," J. Radioanal. Nucl. Chem., Vol. 296, No. 2, pp. 1311-1319. https://doi.org/10.1007/s10967-013-2438-6
  11. Lee, S.Y., Baik, M.H. and Choi, J.W., 2010, "Biogenic formation and growth of uraninite (UO2)," Environ. Sci. Technol., Vol. 44, No. 22, pp. 8409-8414. https://doi.org/10.1021/es101905m
  12. Lee, S.Y., Oh, J.M., Baik, M.H. and Lee, Y.J., 2011a, "Change of oxidation/reduction potential of solution by metal-reducing bacteria and roles of biosynthesized mackinawite," J. Miner. Soc. Korea, Vol. 24, No. 4, pp. 279-287. https://doi.org/10.9727/jmsk.2011.24.4.279
  13. Lee, S.Y., Cha, W.S., Kim, J.G., Baik, M.H., Jung, E.C., Jeong, J.T., Kim, K., Chung, S.Y. and Lee, Y.J., 2014, "Uranium (IV) remobilization under sulfate reducing conditions," Chem. Geol., Vol. 370, No. 1, pp. 40-48. https://doi.org/10.1016/j.chemgeo.2014.01.020
  14. Lee, S.Y., Lee, J.Y., Min, J.H., Kim, S.S., Baik, M.H., Chung, S.Y., Lee, M. and Lee, Y., 2016, "Microbial copper reduction method to scavenge anthropogenic radioiodine," Sci. Rep., Vol. 6, pp. 28113. https://doi.org/10.1038/srep28113
  15. Lee, S.Y., Oh, J.M. and Baik, M.H., 2011b, "Interaction between selenium and bacterium and mineralogical characteristics of biotreated selenium," J. Miner. Soc. Korea, Vol. 24, No. 3, pp. 217-224. https://doi.org/10.9727/jmsk.2011.24.3.217
  16. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Landa, E.R., 1991, "Microbial reduction of uranium," Nature, Vol. 350, No. 4, pp. 413-416. https://doi.org/10.1038/350413a0
  17. Lovley, D.R. and Phillips, E.J.P., 1992, "Reduction of uranium by Desulfovibrio desulfuricans," Appl. Environ. Microbiol., Vol. 58, No. 3, pp. 850-856.
  18. Oh, J.M., Lee, S.Y., Baik, M.H. and Roh, Y., 2010, "Characterization of uranium removal and mineralization by bacteria in deep underground, Korea Atomic Energy Research Institute (KAERI)," J. Miner. Soc. Korea, Vol. 23, No. 2, pp. 107-115.
  19. Sanchez-Andrea, I., Rodriguez, N., Amils, R. and Sanz, J.L., 2011, "Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content," Appl. Environ. Microbiol., Vol. 77, No. 17, pp. 6085-6093. https://doi.org/10.1128/AEM.00654-11
  20. Sawasaki, T., Tanabe, T., Yoshida, T. and Ishida, R., 2003, "Application of gamma radiolysis of water for H2 production," J. Radioanal. Nucl. Chem. Vol. 255, No. 2, pp. 271-274. https://doi.org/10.1023/A:1022580015048
  21. Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R. and Giammar, D.E., 2008, "Dissolution of biogenic and synthetic $UO_2$ under varied reducing conditions," Environ. Sci. Technol., Vol. 42, No. 15, pp. 5600-5606. https://doi.org/10.1021/es800647u
  22. Zhang, J., Dong, H., Liu, D. and Agrawal, A., 2013, "Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus," Geochim. Cosmochim. Acta, Vol. 106, No. 1, pp. 203-215. https://doi.org/10.1016/j.gca.2012.12.031