DOI QR코드

DOI QR Code

Seismic Fragility of Underground Utility Tunnels Considering Probabilistic Site Response Analysis

확률론적 부지응답해석을 고려한 지하공동구의 지진취약도

  • 한승룡 (한국전력기술) ;
  • 이호담 (서울시립대학교 토목공학과) ;
  • 이창수 (서울시립대학교 토목공학과)
  • Received : 2016.04.14
  • Accepted : 2016.04.26
  • Published : 2016.06.30

Abstract

The purpose of this study is the evaluation of the seismic fragility of underground utility tunnels buried. The seismic fragility was estimated by developing fragility curves to assess the degree of vulnerability of structures stochastically. To consider the response of soil which has inherent uncertainty, probabilistic site response analysis had performed based on the shear-wave velocity generated by Monte Carlo Simulation. Artificial earthquakes were generated by enveloping uniform hazard response spectra (UHRS) for the Korean peninsula. The seismic fragility curves were developed through a total of 7200 time history analysis from combination of various conditions of utility tunnels and generated soil properties. The developed fragility curve compared with other fragility curves which were developed for the fixed and deterministic condition of the underground utility tunnels using $V_{S30}$ in the national seismic design standard. As a result, the seismic fragilities using probabilistic site response analysis show less vulnerable than the seismic fragilities with the fixed condition. This study presents that current seismic design of underground utility tunnels is conservative and reflects safer.

본 논문에서는 불확실성이 많은 지반에 매설된 지하공동구의 지진취약도 평가를 목적으로 하며, 도출된 지진취약도 곡선은 지진 발생시 구조물의 취약 정도를 확률론적으로 평가한다. 실제 지반의 응답을 도출하기 위해 몬테카를로 시뮬레이션을 활용하여 생성된 전단파속도에 한반도의 등재해스펙트럼을 포괄하는 인공지진을 바탕으로 확률론적 부지응답해석을 수행하였고, 총 7200번의 시간이력해석을 통하여 지진취약도 곡선을 도출하였다. 이는 국내 내진설계 기준인 상부 30 m 토층의 평균 전단파속도를 이용하여 매설된 공동구의 지반을 고정 지반으로 보고 지진해석을 수행한 지진취약도 곡선과 비교하였다. 결과적으로 고정지반의 지진해석이 부지응답해석을 포함하여 지진해석을 수행한 경우보다 더 보수적으로 설계가 될 수 있다고 나타났다. 본 연구의 결과를 이용하여 지하매설 구조물의 과도한 설계를 지양하고 보다 안전하면서 경제적인 설계를 반영할 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Gasparini, D.A. and Vanmarcke, E.H. (1976) SIMQKE: A program for artificial motion generation. User's manual and documentation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  2. Kim, D.S. and Choo, Y.W. (2001) Dynamic Deformation Characteristics of Cohesionless Soils in Korea Using Resonant Column Tests, Korean Geotechnical Society, Vol.17, No.5, pp.115-128.
  3. Kim, D.S., Lee, S.H., Yoon J.K. (2008) Development of Site Classification System and Modification of Site Coefficients in Korea Based on Mean Shear Wave Velocity of Soil and Depth to Bedrock, Korean Society of Civil Engineers, Vol.28, No.1, pp.63-74.
  4. Kwak, D.Y., Jeong, C.G., Lee, H.W., Park, D.H. (2009) Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part II: Derivation of Probabilistic Site Coefficients, Korean Geo-Environmental Society, Vol.10, No.7, pp.111-115.
  5. Lee, D.H., Jeon, J.M., Oh, J.K., Lee, D.H. (2010) Seismic Performance Assessment of Buried Gas Pipeline using Seismic Fragility Analysis, KSCE CIVIL EXPO 2010, pp.1230-1233.
  6. Lee, C.S. (2015) Development of Seismic Fragilities for Urban Infrastructure Network, National Emergency Management Agency of Korea.
  7. Ministry of Construction Transportation (1997) Study of seismic design standard (II), Ministry of Land, Infrastructure and Transport.
  8. Ministry of Land, Transport and Maritime Affairs (2010) Utility-Pipe Conduit design standard, Ministry of Land, Infrastructure and Transport.
  9. Park, D.H., Kwak, D.Y., Jeong, C.G. (2009) Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part I: Application and verification of a Novel Probabilistic Seismic Hazard Analysis Procedure, Korean Geo-Environmental Society, Vol.10. No.7, pp.103-109.
  10. Rota, M., Lai, C.G., Strobbia, C.L. (2011) Stochastic 1D site response analysis at a site in central Italy, Soil Dynamics and Earthquake Engineering, 31, pp.626-639. https://doi.org/10.1016/j.soildyn.2010.11.009
  11. Schnabel, P.B., Lysmer, J., Seed, H.B. (1972) SHAKE: A computer program for earthquake response analysis of horizontally layered sites, Earthquake Engineering Research Center, University of California, Berkeley, Report No. EERC 72-12.
  12. Seed, H.B. and Idriss, I.M. (1970) Soil moduli and damping factors for dynamic response analyses, Earthquake Engineering Research Center, University of California, Berkeley, Report No. EERC 70-10.
  13. Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, K. (1986) Moduli and damping factors for dynamic analyses of cohesionless soils, Journal of Geotechnical Engineering, ASCE, Vol.112, No.11, pp.1016-1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  14. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T. (2000) Statistical analysis of fragility curve, ASCE Journal of Engineering Mechanics, Vol.126, No.12, pp.1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  15. Shinozuka, M., Feng, M.Q., Kim, H.K., Kim, S.H. (2000) Nonlinear static procedure for fragility curve development, ASCE Journal of Engineering, Vol.126, No.12, pp.1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)