DOI QR코드

DOI QR Code

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution

전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계

  • Park, Seongeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Na, Jonggeol (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Minjun (School of Chemical and Biological Engineering, Seoul National University) ;
  • An, Jinjoo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Chaehee (ISYSTECH) ;
  • Han, Chonghun (School of Chemical and Biological Engineering, Seoul National University)
  • 박성언 (서울대학교 화학생물공학부) ;
  • 나종걸 (서울대학교 화학생물공학부) ;
  • 김민준 (서울대학교 화학생물공학부) ;
  • 안진주 (서울대학교 화학생물공학부) ;
  • 이채희 ((주)아이시스텍) ;
  • 한종훈 (서울대학교 화학생물공학부)
  • Received : 2016.04.04
  • Accepted : 2016.08.02
  • Published : 2016.10.01

Abstract

Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.

산화 칼슘 수용액을 통해 이산화탄소를 포집하는 수성 광물 탄산화 공정은 안정적으로 이산화탄소를 고립시킬 뿐 아니라 생성물의 부가 가치를 기대할 수 있는 대표적인 CCU (Carbon Capture & Utilization) 기술이다. 이 공정의 핵심은 고체 반응물인 산화칼슘의 용해 속도를 최대로 높이는 것인데, 이를 위해 반응기 전체에 고체 반응물이 균일하게 분포되도록 혼합하는 적절한 반응기의 설계가 필요하다. 본 논문에서는 하루에 40ton의 이산화탄소 포집이 가능한 파일럿 규모의 광물 탄산화 반응기를 대상으로, 반응기의 내부 구조 설계에 따라 고체 반응물의 분산도가 어떻게 변하는지에 대해 전산 유체 역학적 모델링(Computational Fluid Dynamics (CFD) modeling)을 통해 연구하였다. 교반 탱크 반응기(stirred tank reactor) 형태를 기반으로 외부 구조는 고정한 상태에서 교반기의 종류/갯수/지름/유격/회전 속도, 칸막이의 높이/너비를 변수로 선정하여 다양한 조합의 경우(case)들을 해석하였다. 각 설계 변수에 대한 민감도를 분석함으로써 각 변수의 영향을 파악하고, 중요한 변수를 판별할 수 있었다. 동시에 고체 부피 분율(solid volume fraction)의 높이 방향 표준 편차가 0.001에 가까운 균일한 분포를 만들 수 있는 내부 설계안을 제안하였다.

Keywords

References

  1. Chae, S.-C., Jang, Y.-N. and Ryu, K.-W., "Mineral Carbonation as a Sequestration Method of $CO_2$," Journal of the Geological Society of Korea, 45(5), 527-555(2009).
  2. Han, K., Rhee, C. H. and Chun, H. D., "Feasibility of Mineral Carbonation Technology as a $CO_2$ Storage Measure Considering Domestic Industrial Environment," Korean Chemical Engineering Research, 49(2), 137-150(2011) https://doi.org/10.9713/kcer.2011.49.2.137
  3. Chen, Z. Y., O'Connor, W. K. and Gerdemann, S., "Chemistry of Aqueous Mineral Carbonation for Carbon Sequestration and Explanation of Experimental Results," Environ. Prog., 25(2), 161-166(2006). https://doi.org/10.1002/ep.10127
  4. Lackner, K. S., et al., "Carbon Dioxide Disposal in Carbonate Minerals," Energy, 20(11), 1153-1170(1995). https://doi.org/10.1016/0360-5442(95)00071-N
  5. Montes-Hernandez, G., et al., "Mineral Sequestration of $CO_2$ by Aqueous Carbonation of Coal Combustion Fly-ash," J. Hazard. Mater., 161(2), 1347-1354(2009). https://doi.org/10.1016/j.jhazmat.2008.04.104
  6. Jana, S. K. and Bhaskarwar, A. N., "Modeling Gas Absorption Accompanied by Chemical Reaction in Bubble Column and Foambed Slurry Reactors," Chem. Eng. Sci., 65(11), 3649-3659(2010). https://doi.org/10.1016/j.ces.2010.03.009
  7. Olajire, A. A., "A Review of Mineral Carbonation Technology in Sequestration of $CO_2$," Journal of Petroleum Science and Engineering, 109, 364-392(2013). https://doi.org/10.1016/j.petrol.2013.03.013
  8. Jin, B. and Lant, P., "Flow Regime, Hydrodynamics, Floc Size Distribution and Sludge Properties in Activated Sludge Bubble Column, Air-lift and Aerated Stirred Reactors," Chem. Eng. Sci., 59(12), 2379-2388(2004). https://doi.org/10.1016/j.ces.2004.01.061
  9. Pangarkar, V. G., Design of Multiphase Reactors, Wiley, 30-46 (2014).
  10. Zwietering, T. N., "Suspending of Solid Particles in Liquid by Agitators," Chem. Eng. Sci., 8(3-4), 244-253(1958). https://doi.org/10.1016/0009-2509(58)85031-9
  11. Grenville, R. K., Mak, A. T. and Brown, D. A., "An Improved Correlation to Predict ''just suspension'' Speed for Solid-liquid Mixtures with Axial Flow Impellers in Stirred Tanks," North American Mixing Forum, June, Victoria, BC, Canada (2010).
  12. Smith, J., Warmoeskerken, M. and Zeef, E., in C. S. Ho, and J. Y. Oldshue (Ed.), Flow conditions in vessels dispersing gases in liquids with multiple impellers, AIChE, New York, 107-115(1987).
  13. Harris, C., et al., "Computational fluid dynamics for chemical reactor engineering," Chem. Eng. Sci., 51(10), 1569-1594(1996). https://doi.org/10.1016/0009-2509(96)00021-8
  14. Kasat, G., et al., "CFD Simulation of Liquid-phase Mixing in Solid-liquid Stirred Reactor," Chem. Eng. Sci., 63(15), 3877-3885 (2008). https://doi.org/10.1016/j.ces.2008.04.018
  15. Murthy, B., Ghadge, R. and Joshi, J., "CFD Simulations of Gasliquid-solid Stirred Reactor: Prediction of Critical Impeller Speed for Solid Suspension," Chem. Eng. Sci., 62(24), 7184-7195(2007). https://doi.org/10.1016/j.ces.2007.07.005
  16. Micale, G., et al., "CFD Simulation of Particle Distribution in Stirred Vessels," Chem. Eng. Res. Des., 78(3), 435-444(2000). https://doi.org/10.1205/026387600527338
  17. Jafari, R., Chaouki, J. and Tanguy, P. A., "A Comprehensive Review of Just Suspended Speed in Liquid-solid and Gas-liquid-solid Stirred Tank Reactors," International Journal of Chemical Reactor Engineering, 10(1)(2012).
  18. Bittorf, K. J. and Kresta, S. M., "Three-dimensional Wall Jets: Axial Flow in a Stirred Tank," AlChE J., 47(6), 1277-1284(2001). https://doi.org/10.1002/aic.690470605
  19. Sharma, R. N. and Shaikh, A. A., "Solids Suspension in Stirred Tanks with Pitched Blade Turbines," Chem. Eng. Sci., 58(10), 2123-2140(2003). https://doi.org/10.1016/S0009-2509(03)00023-X
  20. Khopkar, A., et al., "Gas-liquid Flow Generated by a Rushton Turbine in Stirred Vessel: CARPT/CT Measurements and CFD Simulations," Chem. Eng. Sci., 60(8), 2215-2229(2005). https://doi.org/10.1016/j.ces.2004.11.044
  21. Ljungqvist, M. and Rasmuson, A., "Numerical Simulation of the Two-phase Flow in An Axially Stirred Vessel," Chem. Eng. Res. Des., 79(5), 533-546(2001). https://doi.org/10.1205/02638760152424307
  22. Gohel, S., et al., "CFD Modeling of Solid Suspension in a Stirred Tank: Effect of Drag Models and Turbulent Dispersion on Cloud Height," International Journal of Chemical Engineering, 2012(2012).
  23. Ding, J. and Gidaspow, D., "A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow," AlChE J., 36(4), 523-538(1990). https://doi.org/10.1002/aic.690360404

Cited by

  1. 제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향 vol.55, pp.2, 2016, https://doi.org/10.9713/kcer.2017.55.2.141
  2. A two-way coupled CFD-DQMOM approach for long-term dynamic simulation of a fluidized bed reactor vol.38, pp.2, 2016, https://doi.org/10.1007/s11814-020-0701-4