DOI QR코드

DOI QR Code

A Proposed Analytical Model for the Debris Flow with Erosion and Entrainment of Soil Layer

지반의 침식 및 연행작용을 고려한 토석류 해석 모델 제안

  • 이광우 (연세대학교 토목환경공학과) ;
  • 박현도 (연세대학교 토목환경공학과) ;
  • 정상섬 (연세학교 토목환경공학과)
  • Received : 2016.04.18
  • Accepted : 2016.09.17
  • Published : 2016.10.31

Abstract

A debris flow analysis model has been developed to simulate the erosion and entrainment of soil layer. Special attention is given to the model which represents strength softening behaviour of soil layer due to velocity of deformation. The 3D FE analysis by Coupled Eulerian-Lagrangian (CEL) model is conducted to simulate the debris flow. The model is validated using published data on laboratory experiment (Mangeny et al., 2010). It has been definitely shown that proposed model is in good agreement with the results of laboratory data. Futhermore, the FE analysis is conducted to ensure capability of simulating the real scale debris flow. The result of Ramian watershed, Korea shows that the debris flow has increased the volume and speed and it is in good agreement with field investigation. Based on this, it is confirmed that proposed model shows good agreement of the behavior of the actual and analytical debris flow.

본 연구에서는 지반침식 및 연행작용을 고려한 토석류 해석을 위한 모델을 개발하였으며, 이를 대변형 3차원 유한요소 해석을 통해 거동을 분석하였다. 지반침식 및 연행작용을 고려한 토석류 해석 모델은 토석류에 의한 지반의 변형속도에 따른 전단강도 감소를 고려하였으며, 대변형 해석은 Coupled Eulerian-Lagrangian (CEL)기법을 이용하였다. 모델의 적정성을 확인하기 위하여 지반침식 및 연행작용을 고려한 실내실험(Mangeny et al., 2010)을 모사하여 거동을 비교하였으며, 또한 실제 발생한 우면산 래미안 유역의 토석류를 대상으로 연행작용을 고려한 해석과 고려하지 않은 해석 결과를 비교함으로써 연행작용에 따른 토석류의 거동 및 피해영향 범위를 분석하였다. 그 결과, 실내 모형실험의 결과를 적절히 모사할 수 있었으며, 실제 유역규모의 해석에서도 토석류의 흐름에 의해 원지반의 침식 및 연행작용을 모사할 수 있었으며 연행작용으로 인해 유하부로 흘러내려오는 토석류의 체적과 속도가 증가하는 것을 확인하였다. 이로 인하여 본 연구에서 제안한 해석 모델은 지반의 침식 및 연행작용을 고려하여 토석류의 속도, 토석류의 규모 및 피해 면적을 적절히 예측할 수 있을 것으로 판단된다.

Keywords

References

  1. ABAQUS. (2013), ABAQUS user's and theory manuals, Version 6.13. rhode island: Hibbitt, Karlsson & Sorensen, Inc.
  2. Andrade, J. E. and Borja, R. I. (2006), "Capturing Strain Localization in Dense Sands with Random Density" Int. J. Numer. Methods Eng. Vol.67, pp.1531-1564. https://doi.org/10.1002/nme.1673
  3. Berger, C., McArdell, B. W., Fritschi, B., and Schlunegger, F. (2010), "A Novel Method for Measuring the Timing of Bed Erosion during Debris Flows and Floods", Water Resources Research, Vol.46 No.2, pp.1-7.
  4. Breien, H., F. V. De Blasio, A. Elverhoi, and K. Hoeg (2008), "Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway", Landslides, Vol.5 No.3, pp.271-280. https://doi.org/10.1007/s10346-008-0118-3
  5. Coe, J. A., Kinner, D. A., and Godt, J. W. (2008), "Initiation Conditions for Debris Flows Generated by Runoff at Chalk Cliffs, Central Colorado", Geomorphology, Vol.96 No.3, pp.270-297. https://doi.org/10.1016/j.geomorph.2007.03.017
  6. Egashira, S., Honda, N., and Itoh, T. (2001), "Experimental Study on the Entrainment of Bed Material into Debris Flow", Physics and chemistry of the earth, Vol.26, No.9, pp.645-650. https://doi.org/10.1016/S1464-1895(01)00114-4
  7. Gartner, J. E., Cannon, S. H., Santi, P. M., and Dewolfe, V. G. (2008), "Empirical Models to Predict the Volumes of Debris Flows Generated by Recently Burned Basins in the Western U.S.," Geomorphology, Vol.96 No.3, pp.339-354. https://doi.org/10.1016/j.geomorph.2007.02.033
  8. Guthrie, R. H., Hockin, A., Colquhoun, L., Nagy, T., Evans, S. G., and Ayles, C. (2010), "An Examination of Controls on Debris flow Mobility: Evidence from Coastal British Columbia", Geomorphology, Vol.114, No.4, pp.601-613. https://doi.org/10.1016/j.geomorph.2009.09.021
  9. Hungr, O. (1995), "A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows and Avalanches", Canadian Geotechnical Journal, Vol.32, No.4, pp.610-623. https://doi.org/10.1139/t95-063
  10. Hungr, O., McDougall, S., and Bovis, M. (2005), "Entrainment of Material by Debris Flows, in Debris-Flow Hazards and Related Phenomena", edited by M. Jakob and O. Hungr, pp.135-158, Springer, New York.
  11. Imran, J., Harff, P., and Parker, G. (2001), "A Numerical Model of Submarine Debris Flow with Graphical User Interface", Computers & Geosciences, Vol.27, No.6, pp.717-729. https://doi.org/10.1016/S0098-3004(00)00124-2
  12. Iverson, R. M. (1997), "The Physics of Debris Flows", Reviews of Geophysics, Vol.35, No.3, pp.245. https://doi.org/10.1029/97RG00426
  13. Iverson, R. M. (2003), "The Debris-flow Rheology Myth", In Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp.303-314.
  14. Iverson, R. M. and Denlinger, R. P. (2001), "Mechanics of Debris Flows and Debris-Laden Flash Floods", Seventh Federal Interagency Sedimentation Conference 1-8.
  15. Iverson, R. M., Reid, M. E., Logan, M., Lahusen, R. G., Godt, J. W., and Griswold J. P. (2011), "Positive Feedback and Momentum Growth during Debris-flow Entrainment of Wet Bed Sediment", Nat. Geosci., 4, 116-121. https://doi.org/10.1038/ngeo1040
  16. Iverson, R.M. (2013), "Mechanics of Debris Flows and Rock Avalanches", in Handbook of Environmental Fluid Dynamics, v. 1, H.J.S. Fernando, ed., CRC Press / Taylor & Francis, Boca Raton 573-587.
  17. Iverson, Richard M., Mark E. Reid, and Richard G. LaHusen. (1997), "Debris-Flow Mobilization From Landslides 1", Annual Review of Earth and Planetary Sciences, Vol.25, No.1, pp.85-138. https://doi.org/10.1146/annurev.earth.25.1.85
  18. Jeong, S. S., Kim, J. H., Kim, Y. M., and Bae, D. H. (2014), "Susceptibility Assessment of Landslides under Extreme-rainfall Events Using Hydro-geotechnical Model; A Case Study of Umyeonsan (Mt.), Korea", Nat. Hazards Earth Syst. Sci. Discuss., Vol.2, pp. 5575-5601. https://doi.org/10.5194/nhessd-2-5575-2014
  19. Jeong, S. S., Lee, K. W., and Ko, J. Y. (2015), "A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian)", JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY, Vol.31, No.12, pp.45-57.
  20. Jeong, S.W., Locat, J., Leroueil, S., and Malet, J. P. (2010), "Rheological Properties of Fine-Grained Sediments: the Roles of Texture and Mineralogy", Can. Geotech. J., Vol.47, pp.1011-1023. https://doi.org/10.1139/T10-005
  21. Julien, P. Y. and O'Brien, J. S. (1997), "Selected Notes on Debris Flow Dynamics, Recent Developments on Debris Flows", Lecture note in earth sciences, Springer, Berlin, pp.144-162.
  22. Kim, J., Jeong, S., and Kim, K. (2014), "GIS-based Prediction Method of Landslide Susceptibility Using a Rainfall Infiltration groundwater Flow Model", Engineering Geology, Vol.182, pp.63-78. https://doi.org/10.1016/j.enggeo.2014.09.001
  23. Kim, Y. H. and Jeong, S. S. (2014), "Analysis of Dynamically Penetrating Anchor based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Society of Civil Engineers, Vol. 34, No.3, pp.895-906. https://doi.org/10.12652/Ksce.2014.34.3.0895
  24. Ko, J. Y., Jeong, S. S., and Lee, S. Y. (2015) "A Study on the 3D Analysis of Deiven Pile Penetration based on Coupled Eulerian-Lagrangian (CEL) Methods", Journal of the Korean Geotechnical Socity, Vol.31, No.8, pp.29-38.
  25. Lee, K. W., Kim, Y. M., Kim, J. H., and Jeong, S. S. (2014), "A Study on the Landslide/debris Flow Considering the Erosion and Entrainment of Bed Sediment", Proceedings of KGS fall national conference, Seoul, Korea, pp.169-174.
  26. Mangeney, A., et al. (2010), "Erosion and Mobility in Granular Collapse over Sloping Beds", Journal of Geophysical Research: Earth Surface Vol.115, No.3, pp.1-21.
  27. Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S., and Bouchut, F. (2007), "Avalanche Mobility Induced by the Presence of an Erodible Bed and Associated Entrainment", Geophysical Research Letters, Vol.34, No.22, pp.1-5.
  28. McCoy, S. W., Kean, J. W., Coe, J. A., Tucker, G. E., Staley, D. M., and Wasklewicz, T. A. (2012), Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. Journal of Geophysical Research: Earth Surface, Vol.117, No.3, pp.1-25.
  29. McDougall, S. and Hungr, O. (2005), "Dynamic Modelling of Entrainment in Rapid Landslides", Canadian Geotechnical Journal, Vol.42, No.5, pp.1437-1448. https://doi.org/10.1139/t05-064
  30. O'Brien, J. S. and Julien, P. Y. (1985), "Physical Properties and Mechanics of Hyper-concentrated Sediment Flows", Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah, Utah State University, Utah, pp.260-279.
  31. O'Brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993), "Two-dimensional Water Flood and Mudflow Simulation, J. Hydraul. Eng., No.119, pp.244-261 https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  32. Pirulli, M., Bristeau, M. O., Mangeney, A., and Scavia, C. (2007), "The Effect of the Earth Pressure Coefficients on the Runout of Granular Material", Environmental Modelling and Software, Vol.22, No.10, pp.1437-1454. https://doi.org/10.1016/j.envsoft.2006.06.006
  33. Procter, J., Cronin, S. J., Fuller, I. C., Lube, G., and Manville, V. (2010), "Quantifying the Geomorphic Impacts of a Lake-breakout Lahar, Mount Ruapehu, New Zealand", Geology, Vol.38, No.1, pp.67-70. https://doi.org/10.1130/G30129.1
  34. Pudasaini, S. P. (2012), "A General Two-phase Debris Flow Model", Journal of Geophysical Research: Earth Surface, Vol.117, No.3, pp.1-28.
  35. Reid, M. E., Iverson, R. M., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P. (2011), "Entrainment of Bed Sediment by Debris Flows: Results from Large-scale Experiments", in Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by R. Genevois, D. Hamilton, and A. Prestininzi, pp.367-374, Casa EditriceUniv. La Sapienza, Rome.
  36. Revellino, P., Hungr, O., Guadagno, F. M., and Evans S. G., (2004), "Velocity and Runout Simulation of Destructive Debris Flows and Debris Avalanches in Pyroclastic Deposits, Campania Region, Italy," Environ. Geol., Vol.45, No.3, pp.295-311. https://doi.org/10.1007/s00254-003-0885-z
  37. Schofield, A. and Wroth, P. (1968), "Critical State Soil Mechanics", McGraw-Hill, New York.
  38. Takahashi, T. (2007), Debris flow: Mechanics, Prediction and Countermeasures, Taylor & Francis Group, London, UK.
  39. Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y. (1992), "Routing Debris Flows with Particle Segregation", Journal of Hydraulic Engineering, ASCE, Vol.118, No.11, pp.1490-1507. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1490)