DOI QR코드

DOI QR Code

Novel Approach for Observing the Asymmetrical Evolution and the Compositional Nonuniformity of Laser Pulsed Atom Probe Tomography of a Single ZnO Nanowire

  • Seol, Jae-Bok (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Young-Tae (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Bo-Hwa (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Park, Chan-Gyung (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • Received : 2015.07.13
  • Accepted : 2015.09.17
  • Published : 2016.01.20

Abstract

The characterization of ZnO nanowires is crucial for developing nanostructured devices together with related compounds and alloys with an atomic-scale regime. This study describes the effects of laser energy on the atom probe tomography analysis of a single ZnO nanowire with a high aspect ratio, diameters of 80-100 nm and lengths of $10{\mu}m$. We observed both an asymmetrical evolution in the apex morphology and the compositional nonuniformities of Zn and O ions with respect to the laser energies ranging from 5 to 40 nJ. When the higher laser illumination exposed to the ZnO nanowires, non-uniform field strength becomes noticeable especially at the laser incident side of the samples. Moreover, we measured the charge state ratios of $Zn^+$ and $Zn^{2+}$ ions as a function of the applied laser energies. Our results proved important for accurate quantitative characterization and better interpretation for the laser-pulsed atom probe tomography of ZnO-based devices.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. A. Kim, G. W. Nam, G. S. Kim, S. P. Yoon, J.-Y. Leem, and Y. S. Kim, Korean J. Met. Mater. 51, 529 (2013). https://doi.org/10.3365/KJMM.2013.51.7.529
  2. R. Viter, A. Katoch, and S. S. Kim, Met. Mater. Int. 20, 163 (2014). https://doi.org/10.1007/s12540-013-6027-6
  3. T. H. C. Son, L. K. Top, N. T. D. Tri, H. T. C. Nhan, L. Q. Vinh, B. T. Phan, S. S. Kim, and L. V. Hieu, Met. Mater. Int. 20, 337 (2014). https://doi.org/10.1007/s12540-014-2013-x
  4. T. F. Kelly and M. K. Miller, Rev. Sci. Instrum. 73, 031101 (2007).
  5. D. J. Larson, T. Prosa, R. M. Ulfig, B. P. Geiser, and T. F. Kelly, Local Electrode Atom Probe Tomography, pp.20-38, Springer, New York (2013).
  6. C.-W. Bang, J.-B. Seol, Y. S. Yang, and C.-G. Park, Script Mater. 108, 151 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.004
  7. J.-B. Seol, J.-E. Jung, Y.-W. Jang, and C.-G. Park, Acta Mater. 61, 558 (2013). https://doi.org/10.1016/j.actamat.2012.09.078
  8. J.-B. Seol, M. J. Yao, P. Choi, D. Raabe, and C.-G. Park, Proceeding of the 7th Korea-China Symposium on Advanced Steel Technology: Proceeding, pp.93-96, KIM, Korea (2015).
  9. W. Guo, E. A. Jagle, P.-P. Choi, J. Yao, A. Kostka, J. M. Schneider, and D. Raabe, Phys. Rev. Lett. 113, 035501 (2014). https://doi.org/10.1103/PhysRevLett.113.035501
  10. J. B. Seol, N. S. Lim, B. H. Lee, L. Renaud, and C. G. Park, Met. Mater. Int. 17, 413 (2011). https://doi.org/10.1007/s12540-011-0617-y
  11. J.-B. Seol, B.-H. Lee, P. Choi, S.-G. Lee, and C.-G. Park, Ultramicroscopy 132, 248 (2013). https://doi.org/10.1016/j.ultramic.2013.01.009
  12. D. J. Larson, D. T. Foord, A. K. Petford-Long, T. C. Anthony, I. M. Rozdilsky, A. Cerezo, and G. D. W. Smith, Ultramicroscopy 79, 287 (1999). https://doi.org/10.1016/S0304-3991(99)00055-8
  13. M. Muller, G. D.W. Smith, B. Gault, and C. R. M Grovenor, J. Appl. Phys. 111, 064908 (2012). https://doi.org/10.1063/1.3695461
  14. T. F. Kelly, A. Vella, J. H. Bunton, J. Houard, E. P. Silaeva, J. Bogdanowicz, and W. Vandervorst, Current Opin. Solid State Mater. Sci. 18, 81 (2014). https://doi.org/10.1016/j.cossms.2013.11.001
  15. G. Sha, A. Cerezo, and G. D. W. Smith, Appl. Phys. Lett. 92, 4 (2008).
  16. A. Vella, B. Mazumber, G. Da Costa, and B. Deconihout, J. Appl. Phys. 110, 4 (2011).
  17. J. Hourd, A. Vella, F. Vurpillot, and B. Deconihout, Phys. Rev. B 84, 3 (2011).
  18. A. Vella, J. Houard, F. Vurpillot, and B. Deconihout, Appl. Surf. Sci. 258, 9202 (2012). https://doi.org/10.1016/j.apsusc.2012.01.051
  19. A. Shariq, S. Mutas, K. Wedderhoff, C. Klein, H. Hortenbach, S. Teichert, P. Kucher, and S. S. A. Gerstl, Ultramicroscopy, 109, 472 (2009). https://doi.org/10.1016/j.ultramic.2008.10.001
  20. F. Vurpillot, B. Gault, B.P. Geiser, and D. J. Larson, Ultramicroscopy 132, 19 (2013). https://doi.org/10.1016/j.ultramic.2013.03.010
  21. D. J. Larson, B. P. Geiser, T. J. Prosa, and T. F. Kelly, Microsc. Microanal. 18, 953 (2012). https://doi.org/10.1017/S1431927612001523
  22. F. Tang, B. Gault, S. P. Ringer, and J. M. Cairney, Ultramicroscopy 110, 836 (2010). https://doi.org/10.1016/j.ultramic.2010.03.003
  23. D. W. Saxey, Ultramicroscopy 111, 473 (2011). https://doi.org/10.1016/j.ultramic.2010.11.021
  24. M. Muller, D. W. Saxey, G. D. W. Smith, and B. Gault, Ultramicroscopy 111, 487 (2011). https://doi.org/10.1016/j.ultramic.2010.11.019
  25. A. Devaraj, R. Colby, W. P. Hess, D. E. Perea, and S. Thevuthasan, J. Phys. Chem. Lett 4, 993 (2013). https://doi.org/10.1021/jz400015h

Cited by

  1. Atomic-scale quantification of interdiffusion and dopant localization in GeSbTe-based memory devices vol.109, pp.11, 2016, https://doi.org/10.1063/1.4962807
  2. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods vol.7, pp.2, 2016, https://doi.org/10.1063/1.4976299